{"title":"Modelling of a Large-Scale Non-Insulated Non-Planar HTS Stellarator Coil Using Quanscient Allsolve","authors":"Tara Benkel;Mika Lyly;Janne Ruuskanen;Alexandre Halbach;Valtteri Lahtinen;Nicolo Riva","doi":"10.1109/TASC.2025.3545407","DOIUrl":null,"url":null,"abstract":"Stellarators present features such as steady-state operation and intrinsic stability that make them more attractive than tokamaks in their scaling to fusion power plants. By leveraging more possible configurations, stellarators can be optimized for better engineering feasibility, e.g., resilience to manufacturing tolerances, reduced mechanical load on conductor, material optimization, cost of fabrication. Finite Element Analyses are crucial for the design and optimization of High-Temperature Superconducting (HTS) <italic>RE</i>BCO non-planar coils. However, accurate simulation of large-scale magnetostatic, mechanical, and quench models can take days or even weeks to compute. In this work, we present a model of a real-size, HTS, non-insulated, non-planar stellarator coil and perform in Quanscient Allsolve®, a transient simulation study including modelling quench, using the <inline-formula><tex-math>$H - \\varphi $</tex-math></inline-formula> formulation. It is shown that transient model benefits heavily from the built-in Domain Decomposition Method (DDM), which allows reaching reasonable computation times. Such models become then invaluable in predicting and understanding the complex behavior of non-insulated large-scale <italic>RE</i>BCO magnets, including their intrinsic energy imbalance.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10902410/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Stellarators present features such as steady-state operation and intrinsic stability that make them more attractive than tokamaks in their scaling to fusion power plants. By leveraging more possible configurations, stellarators can be optimized for better engineering feasibility, e.g., resilience to manufacturing tolerances, reduced mechanical load on conductor, material optimization, cost of fabrication. Finite Element Analyses are crucial for the design and optimization of High-Temperature Superconducting (HTS) REBCO non-planar coils. However, accurate simulation of large-scale magnetostatic, mechanical, and quench models can take days or even weeks to compute. In this work, we present a model of a real-size, HTS, non-insulated, non-planar stellarator coil and perform in Quanscient Allsolve®, a transient simulation study including modelling quench, using the $H - \varphi $ formulation. It is shown that transient model benefits heavily from the built-in Domain Decomposition Method (DDM), which allows reaching reasonable computation times. Such models become then invaluable in predicting and understanding the complex behavior of non-insulated large-scale REBCO magnets, including their intrinsic energy imbalance.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.