Modelling of a Large-Scale Non-Insulated Non-Planar HTS Stellarator Coil Using Quanscient Allsolve

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Tara Benkel;Mika Lyly;Janne Ruuskanen;Alexandre Halbach;Valtteri Lahtinen;Nicolo Riva
{"title":"Modelling of a Large-Scale Non-Insulated Non-Planar HTS Stellarator Coil Using Quanscient Allsolve","authors":"Tara Benkel;Mika Lyly;Janne Ruuskanen;Alexandre Halbach;Valtteri Lahtinen;Nicolo Riva","doi":"10.1109/TASC.2025.3545407","DOIUrl":null,"url":null,"abstract":"Stellarators present features such as steady-state operation and intrinsic stability that make them more attractive than tokamaks in their scaling to fusion power plants. By leveraging more possible configurations, stellarators can be optimized for better engineering feasibility, e.g., resilience to manufacturing tolerances, reduced mechanical load on conductor, material optimization, cost of fabrication. Finite Element Analyses are crucial for the design and optimization of High-Temperature Superconducting (HTS) <italic>RE</i>BCO non-planar coils. However, accurate simulation of large-scale magnetostatic, mechanical, and quench models can take days or even weeks to compute. In this work, we present a model of a real-size, HTS, non-insulated, non-planar stellarator coil and perform in Quanscient Allsolve®, a transient simulation study including modelling quench, using the <inline-formula><tex-math>$H - \\varphi $</tex-math></inline-formula> formulation. It is shown that transient model benefits heavily from the built-in Domain Decomposition Method (DDM), which allows reaching reasonable computation times. Such models become then invaluable in predicting and understanding the complex behavior of non-insulated large-scale <italic>RE</i>BCO magnets, including their intrinsic energy imbalance.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10902410/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Stellarators present features such as steady-state operation and intrinsic stability that make them more attractive than tokamaks in their scaling to fusion power plants. By leveraging more possible configurations, stellarators can be optimized for better engineering feasibility, e.g., resilience to manufacturing tolerances, reduced mechanical load on conductor, material optimization, cost of fabrication. Finite Element Analyses are crucial for the design and optimization of High-Temperature Superconducting (HTS) REBCO non-planar coils. However, accurate simulation of large-scale magnetostatic, mechanical, and quench models can take days or even weeks to compute. In this work, we present a model of a real-size, HTS, non-insulated, non-planar stellarator coil and perform in Quanscient Allsolve®, a transient simulation study including modelling quench, using the $H - \varphi $ formulation. It is shown that transient model benefits heavily from the built-in Domain Decomposition Method (DDM), which allows reaching reasonable computation times. Such models become then invaluable in predicting and understanding the complex behavior of non-insulated large-scale REBCO magnets, including their intrinsic energy imbalance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信