Xinrui Feng, Yaoyu Luo, Min Zheng, Xiaojie Sun* and Xiantao Shen*,
{"title":"Independent and Combined Associations between Metals Exposure and Inflammatory Markers among the General U.S. Adults","authors":"Xinrui Feng, Yaoyu Luo, Min Zheng, Xiaojie Sun* and Xiantao Shen*, ","doi":"10.1021/envhealth.4c0009710.1021/envhealth.4c00097","DOIUrl":null,"url":null,"abstract":"<p >Exposure to metals can trigger a series of diseases by dysregulating the human immune system, but there is still a lack of systematic studies assessing the independent and combined effects of exposure to metals on immune function in the general population, particularly concerning inflammation markers. This cross-sectional study was designed to mainly examine the associations between urinary metal mixtures and inflammatory markers, including white blood cell (WBC), platelet count (PLT), mean platelet volume (MPV), MPV/PLT ratio (MPR), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR). A total of 3451 participants aged ≥20 years were selected from the 2013–2016 National Health and Nutrition Examination Survey. Generalized linear models were used to investigate the relationships of exposure to single metals on inflammatory markers. Associations between coexposure to multiple metals and inflammatory markers were determined using weighted quantile sum regression and quantile g-computation. Barium, cadmium, lead, thallium, and cobalt showed significant associations with MPV, PLR, and NLR. Metal mixtures showed a negative association with MPV, while they had positive associations with PLR and NLR. Overall, our study highlights the significant effects of multiple metals exposure on inflammation markers, including MPV, PLR, and NLR, among U.S. adults. Thereinto, uranium, cadmium, and cobalt were identified as major contributors. Further prospective studies representative of other countries are warranted to either validate or refute our findings.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 3","pages":"282–290 282–290"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/envhealth.4c00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to metals can trigger a series of diseases by dysregulating the human immune system, but there is still a lack of systematic studies assessing the independent and combined effects of exposure to metals on immune function in the general population, particularly concerning inflammation markers. This cross-sectional study was designed to mainly examine the associations between urinary metal mixtures and inflammatory markers, including white blood cell (WBC), platelet count (PLT), mean platelet volume (MPV), MPV/PLT ratio (MPR), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR). A total of 3451 participants aged ≥20 years were selected from the 2013–2016 National Health and Nutrition Examination Survey. Generalized linear models were used to investigate the relationships of exposure to single metals on inflammatory markers. Associations between coexposure to multiple metals and inflammatory markers were determined using weighted quantile sum regression and quantile g-computation. Barium, cadmium, lead, thallium, and cobalt showed significant associations with MPV, PLR, and NLR. Metal mixtures showed a negative association with MPV, while they had positive associations with PLR and NLR. Overall, our study highlights the significant effects of multiple metals exposure on inflammation markers, including MPV, PLR, and NLR, among U.S. adults. Thereinto, uranium, cadmium, and cobalt were identified as major contributors. Further prospective studies representative of other countries are warranted to either validate or refute our findings.
期刊介绍:
Environment & Health a peer-reviewed open access journal is committed to exploring the relationship between the environment and human health.As a premier journal for multidisciplinary research Environment & Health reports the health consequences for individuals and communities of changing and hazardous environmental factors. In supporting the UN Sustainable Development Goals the journal aims to help formulate policies to create a healthier world.Topics of interest include but are not limited to:Air water and soil pollutionExposomicsEnvironmental epidemiologyInnovative analytical methodology and instrumentation (multi-omics non-target analysis effect-directed analysis high-throughput screening etc.)Environmental toxicology (endocrine disrupting effect neurotoxicity alternative toxicology computational toxicology epigenetic toxicology etc.)Environmental microbiology pathogen and environmental transmission mechanisms of diseasesEnvironmental modeling bioinformatics and artificial intelligenceEmerging contaminants (including plastics engineered nanomaterials etc.)Climate change and related health effectHealth impacts of energy evolution and carbon neutralizationFood and drinking water safetyOccupational exposure and medicineInnovations in environmental technologies for better healthPolicies and international relations concerned with environmental health