Xinbo Tong, Brian D. Ridenour, Abhishek Saji Kumar, Shuai Feng, Jared Nettles, Jerry Y.S. Lin, Sui Yang and Kailong Jin*,
{"title":"Mechanically Strong and Photothermally Active Covalent Organic Framework Nanocomposite Aerogels for Applications in Gas Adsorption","authors":"Xinbo Tong, Brian D. Ridenour, Abhishek Saji Kumar, Shuai Feng, Jared Nettles, Jerry Y.S. Lin, Sui Yang and Kailong Jin*, ","doi":"10.1021/acsanm.5c0055810.1021/acsanm.5c00558","DOIUrl":null,"url":null,"abstract":"<p >Covalent organic framework (COF) aerogels are hierarchically porous polymeric materials with ultrahigh specific surface area, making them attractive for wide applications such as molecular capture, adsorption, and catalysis. Previous COF aerogel studies have focused on varying their chemical structures and linkage chemistries to fine-tune material properties and functionality, most of which have reported relatively unsatisfying performance (e.g., poor mechanical strength and strain tolerance). This study describes the synthesis and characterization of COF nanocomposite aerogels, whose material properties and functionality are effectively engineered through the incorporation of reinforcing fillers/binders or functional additives. Boron nitride (BN) fillers, cross-linked poly(acrylic acid) (XPAA) binders, and gold nanoparticles (AuNps) are incorporated into 1,3,5-tris(aminophenyl)benzene-terephthaldehyde (TAPB-PDA) COF aerogel matrices to form homogeneous nanocomposite aerogels with enhanced mechanical properties and unique photothermal conversion capabilities. Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy results confirm the successful filler/additive inclusion into the final COF nanocomposite aerogels. Specifically, BN filler loading at ∼17 wt % relative to final COF mass doubles COF aerogel’s Young’s modulus from 11 to 22 kPa according to mechanical compression tests, with only ∼10% reduction in COF’s accessible mesopores’ surface area according to nitrogen porosimeter analyses. Meanwhile, incorporating ∼7 wt % XPAA relative to final COF mass improves the Young’s modulus to 21 kPa, while increasing the aerogel’s yield strain from 10 to 65% strain, although this leads to a ∼35% reduction in COF’s accessible mesopores’ surface area. Furthermore, photothermal AuNps are incorporated to form functional COF nanocomposite aerogels, whose overall temperature increases by 5.5 °C after 1 sun (AM1.5G, 1000 W m<sup>–2</sup>) irradiation. Overall, this study demonstrates potential routes to fabricate hierarchically porous COF nanocomposite aerogels with high specific surface area, robust mechanical stability, and unique photothermal functionality, which hold promises for applications in adsorption separation, gas storage, and photocatalysis.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 11","pages":"5815–5828 5815–5828"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00558","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic framework (COF) aerogels are hierarchically porous polymeric materials with ultrahigh specific surface area, making them attractive for wide applications such as molecular capture, adsorption, and catalysis. Previous COF aerogel studies have focused on varying their chemical structures and linkage chemistries to fine-tune material properties and functionality, most of which have reported relatively unsatisfying performance (e.g., poor mechanical strength and strain tolerance). This study describes the synthesis and characterization of COF nanocomposite aerogels, whose material properties and functionality are effectively engineered through the incorporation of reinforcing fillers/binders or functional additives. Boron nitride (BN) fillers, cross-linked poly(acrylic acid) (XPAA) binders, and gold nanoparticles (AuNps) are incorporated into 1,3,5-tris(aminophenyl)benzene-terephthaldehyde (TAPB-PDA) COF aerogel matrices to form homogeneous nanocomposite aerogels with enhanced mechanical properties and unique photothermal conversion capabilities. Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy results confirm the successful filler/additive inclusion into the final COF nanocomposite aerogels. Specifically, BN filler loading at ∼17 wt % relative to final COF mass doubles COF aerogel’s Young’s modulus from 11 to 22 kPa according to mechanical compression tests, with only ∼10% reduction in COF’s accessible mesopores’ surface area according to nitrogen porosimeter analyses. Meanwhile, incorporating ∼7 wt % XPAA relative to final COF mass improves the Young’s modulus to 21 kPa, while increasing the aerogel’s yield strain from 10 to 65% strain, although this leads to a ∼35% reduction in COF’s accessible mesopores’ surface area. Furthermore, photothermal AuNps are incorporated to form functional COF nanocomposite aerogels, whose overall temperature increases by 5.5 °C after 1 sun (AM1.5G, 1000 W m–2) irradiation. Overall, this study demonstrates potential routes to fabricate hierarchically porous COF nanocomposite aerogels with high specific surface area, robust mechanical stability, and unique photothermal functionality, which hold promises for applications in adsorption separation, gas storage, and photocatalysis.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.