{"title":"Surface Lattice Oxygen Confined Hydrogen Transfer for Electrochemical Acetonitrile Hydrogenation","authors":"Hao Zhang, Linghao Yu, Yancai Yao*, Biao Zhou, Jundi Cheng, Xupeng Liu, Ziyue Chen, Hao Zhang, Long Zhao and Lizhi Zhang*, ","doi":"10.1021/acscatal.4c0792810.1021/acscatal.4c07928","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical synthesis of ethylamine from acetonitrile with H<sub>2</sub>O is a promising alternative to the traditional H<sub>2</sub>-based process but is challenged by the sluggish hydrogenation process with the inefficient supply of active hydrogen species (H*). Herein, we report an accelerated hydrogen transfer strategy to facilitate on-site electrochemical hydrogenation of acetonitrile for ethylamine synthesis. This strategy was realized by a monolithic electrode composed of oxygen vacancies (OVs)-rich titanium dioxide nanoarrays grown on Ti foam in combination with Ni single atoms (Ni<sub>1</sub>/OVs-TiO<sub>2</sub> NA), which enabled the efficient electrochemical water dissociation into H* along with the optimized electronic structure of surface lattice oxygens by leveraging adjacent OVs, effectively weakening the binding strength of O–H bonds for the subsequent fast transfer of confined H* mediated by surface lattice oxygens. With further incorporation of Ni single atoms as H* trapping centers for the hydrogenation step, the as-prepared Ni<sub>1</sub>/OVs-TiO<sub>2</sub> NA delivered an impressive electrocatalytic performance of acetonitrile hydrogenation with an ethylamine yield rate of 6.93 mmol h<sup>–1</sup> mg<sub>Ni</sub><sup>–1</sup> and a Faraday efficiency of 94%, 8.8-fold higher than that of OVs-free counterpart (0.78 mmol h<sup>–1</sup> mg<sub>Ni</sub><sup>–1</sup>, 39%). This work clarifies the promotion effect of surface lattice oxygen on hydrogen-transfer-related electrochemical hydrogenation reactions and offers a water-based ethylamine synthesis strategy.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 6","pages":"4468–4476 4468–4476"},"PeriodicalIF":13.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c07928","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical synthesis of ethylamine from acetonitrile with H2O is a promising alternative to the traditional H2-based process but is challenged by the sluggish hydrogenation process with the inefficient supply of active hydrogen species (H*). Herein, we report an accelerated hydrogen transfer strategy to facilitate on-site electrochemical hydrogenation of acetonitrile for ethylamine synthesis. This strategy was realized by a monolithic electrode composed of oxygen vacancies (OVs)-rich titanium dioxide nanoarrays grown on Ti foam in combination with Ni single atoms (Ni1/OVs-TiO2 NA), which enabled the efficient electrochemical water dissociation into H* along with the optimized electronic structure of surface lattice oxygens by leveraging adjacent OVs, effectively weakening the binding strength of O–H bonds for the subsequent fast transfer of confined H* mediated by surface lattice oxygens. With further incorporation of Ni single atoms as H* trapping centers for the hydrogenation step, the as-prepared Ni1/OVs-TiO2 NA delivered an impressive electrocatalytic performance of acetonitrile hydrogenation with an ethylamine yield rate of 6.93 mmol h–1 mgNi–1 and a Faraday efficiency of 94%, 8.8-fold higher than that of OVs-free counterpart (0.78 mmol h–1 mgNi–1, 39%). This work clarifies the promotion effect of surface lattice oxygen on hydrogen-transfer-related electrochemical hydrogenation reactions and offers a water-based ethylamine synthesis strategy.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.