Do-Hyun Kim, Taesoo Lee, Si Cheon Kim, Kyungmoon Kang, Hyo-Geun Kwon, Kihyo Kim, Heung Bae Jeon*, Jeonghun Kwak* and Sang-Wook Kim*,
{"title":"ZnSTe/ZnSe/ZnS Reverse Type-I Blue-emitting Quantum Dot Diodes","authors":"Do-Hyun Kim, Taesoo Lee, Si Cheon Kim, Kyungmoon Kang, Hyo-Geun Kwon, Kihyo Kim, Heung Bae Jeon*, Jeonghun Kwak* and Sang-Wook Kim*, ","doi":"10.1021/acsanm.5c0027510.1021/acsanm.5c00275","DOIUrl":null,"url":null,"abstract":"<p >ZnSTe/ZnSe/ZnS core/shell/shell quantum dots (QDs) were synthesized using a single ZnS precursor to achieve blue-emitting QDs with an emission peak at 450 nm. In this structure, a small quantity of tellurium (Te) was surface-doped onto the inner-core ZnS surface positioned at the interface with the ZnSe shell. This doping suppressed the surface trap emission and induced a red-shift in the emission of the final ZnSTe/ZnSe/ZnS core/shell/shell QDs, resulting in an improved quantum yield (QY) after the application of the outer ZnS shell. These QDs exhibited a photoluminescence (PL) peak at 447 nm, a full width at half maximum (fwhm) of 35 nm, and a PL QY of 74%. The emission spectrum demonstrated excellent symmetry, with half-maxima widths of 17.3 and 18.2 nm on either side of the peak center. When incorporated into electroluminescent (EL) devices, quantum-dot light-emitting diodes displayed band–edge emission with symmetric EL spectra centered at a peak wavelength of 451 nm and a fwhm of 30 nm. These devices achieved a maximum luminance of 2200 cd/m<sup>2</sup>, an external quantum efficiency of 4.58%, and a current efficiency of 2.31 cd/A.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 11","pages":"5721–5729 5721–5729"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00275","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ZnSTe/ZnSe/ZnS core/shell/shell quantum dots (QDs) were synthesized using a single ZnS precursor to achieve blue-emitting QDs with an emission peak at 450 nm. In this structure, a small quantity of tellurium (Te) was surface-doped onto the inner-core ZnS surface positioned at the interface with the ZnSe shell. This doping suppressed the surface trap emission and induced a red-shift in the emission of the final ZnSTe/ZnSe/ZnS core/shell/shell QDs, resulting in an improved quantum yield (QY) after the application of the outer ZnS shell. These QDs exhibited a photoluminescence (PL) peak at 447 nm, a full width at half maximum (fwhm) of 35 nm, and a PL QY of 74%. The emission spectrum demonstrated excellent symmetry, with half-maxima widths of 17.3 and 18.2 nm on either side of the peak center. When incorporated into electroluminescent (EL) devices, quantum-dot light-emitting diodes displayed band–edge emission with symmetric EL spectra centered at a peak wavelength of 451 nm and a fwhm of 30 nm. These devices achieved a maximum luminance of 2200 cd/m2, an external quantum efficiency of 4.58%, and a current efficiency of 2.31 cd/A.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.