Stimulating Protonation Capability by Eliminating Detrimental Defects in Crystalline Carbon Nitride for Photocatalytic Hydrogen Evolution

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Youyu Pang, Linjia Li, Qijing Bu, Rui Zhang, Yanhong Lin, Tengfeng Xie
{"title":"Stimulating Protonation Capability by Eliminating Detrimental Defects in Crystalline Carbon Nitride for Photocatalytic Hydrogen Evolution","authors":"Youyu Pang, Linjia Li, Qijing Bu, Rui Zhang, Yanhong Lin, Tengfeng Xie","doi":"10.1002/adfm.202501108","DOIUrl":null,"url":null,"abstract":"Ionothermal synthesis method often results in significant structural defects in the prepared crystalline carbon nitride due to insufficient penetration of the molten salt. Herein, a strategy involving the addition of a foaming agent (NH₄Cl) to the precursor is adopted, which significantly enhances the penetration of the molten salt during the ionothermal synthesis of crystalline carbon nitride. This results in a more uniform internal structural unit and fewer detrimental structural defects (terminal amine groups and hydrogen bonds formed by these groups) in crystalline carbon nitride due to the transformation from the triazine-heptazine mixed phase to the heptazine phase. This improvement enables the photocatalyst, upon loading of cocatalysts, to maximally utilize photogenerated electrons and holes, establishing a smooth pathway for surface protonation and electron-proton coupling. The results show that the photocatalytic hydrogen production rate reaches 8.67 mmol g<sup>−1</sup> h<sup>−1</sup> and exhibits a high apparent quantum efficiency of 22.1% (λ = 400 nm) for hydrogen evolution. This study elucidates the relationship between molten salt penetration and the crystal structure of carbon nitride during the ionothermal synthesis process. It also reveals the impact of these factors on photocatalytic hydrogen production from the perspectives of photogenerated carrier behavior and photocatalytic reaction kinetics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202501108","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ionothermal synthesis method often results in significant structural defects in the prepared crystalline carbon nitride due to insufficient penetration of the molten salt. Herein, a strategy involving the addition of a foaming agent (NH₄Cl) to the precursor is adopted, which significantly enhances the penetration of the molten salt during the ionothermal synthesis of crystalline carbon nitride. This results in a more uniform internal structural unit and fewer detrimental structural defects (terminal amine groups and hydrogen bonds formed by these groups) in crystalline carbon nitride due to the transformation from the triazine-heptazine mixed phase to the heptazine phase. This improvement enables the photocatalyst, upon loading of cocatalysts, to maximally utilize photogenerated electrons and holes, establishing a smooth pathway for surface protonation and electron-proton coupling. The results show that the photocatalytic hydrogen production rate reaches 8.67 mmol g−1 h−1 and exhibits a high apparent quantum efficiency of 22.1% (λ = 400 nm) for hydrogen evolution. This study elucidates the relationship between molten salt penetration and the crystal structure of carbon nitride during the ionothermal synthesis process. It also reveals the impact of these factors on photocatalytic hydrogen production from the perspectives of photogenerated carrier behavior and photocatalytic reaction kinetics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信