Detecting Hot Electron-Induced Local Damage Using THz Near-Field Optical Microscopy

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weijie Deng, Yinan Wang, Xiaoyan Zhu, Rui Xin, Tianxin Li, Qianchun Weng, Wei Lu
{"title":"Detecting Hot Electron-Induced Local Damage Using THz Near-Field Optical Microscopy","authors":"Weijie Deng, Yinan Wang, Xiaoyan Zhu, Rui Xin, Tianxin Li, Qianchun Weng, Wei Lu","doi":"10.1021/acsphotonics.5c00108","DOIUrl":null,"url":null,"abstract":"Hot electron-induced degradation in semiconductor devices is a critical factor affecting the reliability and performance of microelectronic systems. While existing techniques provide valuable insights into post-failure analysis, directly visualizing hot electrons during device operation remains challenging yet essential for understanding hot electron-induced damage and degradation. In this work, we introduce ultrasensitive terahertz near-field optical microscopy to detect early-stage nanoscale damage in a GaAs/AlGaAs conducting channel with minimal conductance deviation (Δ<i>R</i>/<i>R</i> = 2.5%) by measuring hot electron-associated photon emission. Prolonged hot electron stress leads to the formation of surface lattice cracks that propagate along specific crystal orientations, underscoring the role of the hot electron in accelerating device degradation. Complementary Joule heat simulations show that lattice heating has a negligible effect on failure, supporting the conclusion that hot electron-induced effects dominate the degradation process. Our findings offer new insights into the mechanisms of hot electron-induced damage and demonstrate the terahertz nanoimaging technique as an effective tool for studying reliability issues in semiconductor devices, potentially aiding in the development of more resilient microelectronic systems.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"3 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.5c00108","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hot electron-induced degradation in semiconductor devices is a critical factor affecting the reliability and performance of microelectronic systems. While existing techniques provide valuable insights into post-failure analysis, directly visualizing hot electrons during device operation remains challenging yet essential for understanding hot electron-induced damage and degradation. In this work, we introduce ultrasensitive terahertz near-field optical microscopy to detect early-stage nanoscale damage in a GaAs/AlGaAs conducting channel with minimal conductance deviation (ΔR/R = 2.5%) by measuring hot electron-associated photon emission. Prolonged hot electron stress leads to the formation of surface lattice cracks that propagate along specific crystal orientations, underscoring the role of the hot electron in accelerating device degradation. Complementary Joule heat simulations show that lattice heating has a negligible effect on failure, supporting the conclusion that hot electron-induced effects dominate the degradation process. Our findings offer new insights into the mechanisms of hot electron-induced damage and demonstrate the terahertz nanoimaging technique as an effective tool for studying reliability issues in semiconductor devices, potentially aiding in the development of more resilient microelectronic systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信