{"title":"In-situ responses of temperate-zone bats to climate change","authors":"Gerald Kerth, Janis M. Wolf","doi":"10.1111/nyas.15317","DOIUrl":null,"url":null,"abstract":"<p>There is growing evidence that human-induced climate change poses a major threat to bats. As climate change progresses, we can only hope to mitigate its negative effects on bat populations by gaining a more comprehensive understanding of the complex interactions of all the factors involved. Drawing on recent evidence, largely from long-term field studies of individually marked bats, we discuss the multiple impacts—positive and negative—of climate change on temperate heterothermic bats and their responses to climate change in situ. For example, there is increasing evidence that warmer summers and milder winters are leading to changes in the seasonal phenology of bats, which in turn may lead to species-specific changes in demography, morphology, physiology, food availability, and roost use. We also highlight open research questions on the responses of bats to climate change. This includes better data on population trends and the underlying direct and indirect climate-related causes for changes in mortality and reproductive success. In order to assess the long-term impacts of climate change on bats, more information is needed about the relative importance of phenotypic plasticity and evolutionary adaptation in the responses of bats to climate change.</p>","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"1546 1","pages":"23-34"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nyas.15317","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nyas.15317","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing evidence that human-induced climate change poses a major threat to bats. As climate change progresses, we can only hope to mitigate its negative effects on bat populations by gaining a more comprehensive understanding of the complex interactions of all the factors involved. Drawing on recent evidence, largely from long-term field studies of individually marked bats, we discuss the multiple impacts—positive and negative—of climate change on temperate heterothermic bats and their responses to climate change in situ. For example, there is increasing evidence that warmer summers and milder winters are leading to changes in the seasonal phenology of bats, which in turn may lead to species-specific changes in demography, morphology, physiology, food availability, and roost use. We also highlight open research questions on the responses of bats to climate change. This includes better data on population trends and the underlying direct and indirect climate-related causes for changes in mortality and reproductive success. In order to assess the long-term impacts of climate change on bats, more information is needed about the relative importance of phenotypic plasticity and evolutionary adaptation in the responses of bats to climate change.
期刊介绍:
Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.