Non-targeted lipidomics reveals the distinct metabolic mechanisms of nZnO and Zn ions in fish liver

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuoli Ma, Wen-Xiong Wang
{"title":"Non-targeted lipidomics reveals the distinct metabolic mechanisms of nZnO and Zn ions in fish liver","authors":"Shuoli Ma, Wen-Xiong Wang","doi":"10.1039/d5en00160a","DOIUrl":null,"url":null,"abstract":"The toxicity of environmental pollutants is often manifested through metabolic disruptions and damage to detoxification organs. However, current understanding is insufficient to explain the physiological response mechanisms of metabolically abnormal fish exposed to secondary pollutants in complex natural environments. This study established a fish model with non-alcoholic fatty liver to evaluate the effects of Zn oxide nanoparticles (nZnO) and Zn²⁺ on physiological metabolism using untargeted lipidomics and bioimaging techniques. Nile red and hematoxylin and eosin (H&E) staining indicated that increased Zn levels reduced the number of lipid droplets (LDs) and hepatocyte vacuolization in the livers of groupers. Non-targeted lipidomics, employing an unsupervised K-means clustering algorithm, identified key lipid profiles that differentiated the effects of nZnO and Zn, including TG (16:0/16:1/18:1), PC (18:2/22:6), TG (18:2/18:2/22:6), SM (d18:1/24:1), and TG (16:1/18:1/18:2). The increased content of SM (d18:1/24:0) indicated that fish liver cells internalized nZnO via lipid raft structures on the cell membrane, a process distinct from Zn ion uptake. Moreover, nZnO/Zn treatments significantly activated lipolysis regulation in fish liver experiencing oxidative stress. This study contributed to the use of non-targeted lipidomics to identify differential biomarkers of nZnO and Zn, as well as their compensatory mechanisms in metabolically abnormal fish. These findings provide novel insights into the effects of nanometal exposure on aquatic animal health in complex environments.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"33 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d5en00160a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The toxicity of environmental pollutants is often manifested through metabolic disruptions and damage to detoxification organs. However, current understanding is insufficient to explain the physiological response mechanisms of metabolically abnormal fish exposed to secondary pollutants in complex natural environments. This study established a fish model with non-alcoholic fatty liver to evaluate the effects of Zn oxide nanoparticles (nZnO) and Zn²⁺ on physiological metabolism using untargeted lipidomics and bioimaging techniques. Nile red and hematoxylin and eosin (H&E) staining indicated that increased Zn levels reduced the number of lipid droplets (LDs) and hepatocyte vacuolization in the livers of groupers. Non-targeted lipidomics, employing an unsupervised K-means clustering algorithm, identified key lipid profiles that differentiated the effects of nZnO and Zn, including TG (16:0/16:1/18:1), PC (18:2/22:6), TG (18:2/18:2/22:6), SM (d18:1/24:1), and TG (16:1/18:1/18:2). The increased content of SM (d18:1/24:0) indicated that fish liver cells internalized nZnO via lipid raft structures on the cell membrane, a process distinct from Zn ion uptake. Moreover, nZnO/Zn treatments significantly activated lipolysis regulation in fish liver experiencing oxidative stress. This study contributed to the use of non-targeted lipidomics to identify differential biomarkers of nZnO and Zn, as well as their compensatory mechanisms in metabolically abnormal fish. These findings provide novel insights into the effects of nanometal exposure on aquatic animal health in complex environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信