Yichao Wu, Qianyi Zuo, Tao Jiang, Zilong Wang, Jia Hong Pan, Zhuoyu Ji
{"title":"Design and Fabrication of Phosphazene-based Porous Organic Materials for Iodine Adsorption","authors":"Yichao Wu, Qianyi Zuo, Tao Jiang, Zilong Wang, Jia Hong Pan, Zhuoyu Ji","doi":"10.1039/d5en00136f","DOIUrl":null,"url":null,"abstract":"Iodine plays a critical role in nuclear industries, medicine, and environmental monitoring, often occurring in trace amounts in wastewater and contaminated environments. Despite the exploration of various adsorbents for iodine capture, many exhibit limitations such as low adsorption capacities, poor performance, and limited reusability. Therefore, novel materials with enhanced iodine extraction capabilities are needed. Polymer-based adsorbents offer substantial promise due to their unique chemical structures and rich functional groups. Via nucleophilic substitution of hexachlorocyclotriphosphazene (HCCP) with various amines, five polyphosphazene polymers—PDD-HCCP, BDP-HCCP, BDD-HCCP, TAPA-HCCP, and TAPDA-HCCP—were synthesized in this study.. These polymers exhibited excellent iodine adsorption capacity, with TAPDA-HCCP achieving the highest theoretical capacity in both iodine vapor and aqueous phases (I₂: 7.83 g·g⁻¹, CH₃I: 1.26 g·g⁻¹, Iodine water: 3.69 g·g⁻¹, iodine cyclohexane: 1.15 g·g⁻¹). In aqueous iodine adsorption experiments, the kinetics followed a pseudo-second-order model, indicating chemical adsorption as the dominant mechanism. Specifically, equilibrium was reached within 240 min, with PDD-HCCP and TAPDA-HCCP achieving iodine removal efficiencies greater than 90%. The adsorption isotherms fitted the Langmuir model, suggesting monolayer adsorption. FT-IR and XPS analyses confirmed that the -NH, P=N-P, and sp³ N groups play a crucial role in forming charge-transfer complexes with iodine. These results highlight the potential of polyphosphazene-based adsorbents for efficient iodine capture in environmental applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"28 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d5en00136f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Iodine plays a critical role in nuclear industries, medicine, and environmental monitoring, often occurring in trace amounts in wastewater and contaminated environments. Despite the exploration of various adsorbents for iodine capture, many exhibit limitations such as low adsorption capacities, poor performance, and limited reusability. Therefore, novel materials with enhanced iodine extraction capabilities are needed. Polymer-based adsorbents offer substantial promise due to their unique chemical structures and rich functional groups. Via nucleophilic substitution of hexachlorocyclotriphosphazene (HCCP) with various amines, five polyphosphazene polymers—PDD-HCCP, BDP-HCCP, BDD-HCCP, TAPA-HCCP, and TAPDA-HCCP—were synthesized in this study.. These polymers exhibited excellent iodine adsorption capacity, with TAPDA-HCCP achieving the highest theoretical capacity in both iodine vapor and aqueous phases (I₂: 7.83 g·g⁻¹, CH₃I: 1.26 g·g⁻¹, Iodine water: 3.69 g·g⁻¹, iodine cyclohexane: 1.15 g·g⁻¹). In aqueous iodine adsorption experiments, the kinetics followed a pseudo-second-order model, indicating chemical adsorption as the dominant mechanism. Specifically, equilibrium was reached within 240 min, with PDD-HCCP and TAPDA-HCCP achieving iodine removal efficiencies greater than 90%. The adsorption isotherms fitted the Langmuir model, suggesting monolayer adsorption. FT-IR and XPS analyses confirmed that the -NH, P=N-P, and sp³ N groups play a crucial role in forming charge-transfer complexes with iodine. These results highlight the potential of polyphosphazene-based adsorbents for efficient iodine capture in environmental applications.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis