Jingyu Yan, Mengjia Zhang, Yongning Yi, Ran Ran, Bote Zhao, Wei Zhou, Wei Wang
{"title":"Nanotechnology-Based Design and Fabrication of Advanced Electrolytes for Solid Oxide Cells","authors":"Jingyu Yan, Mengjia Zhang, Yongning Yi, Ran Ran, Bote Zhao, Wei Zhou, Wei Wang","doi":"10.1002/smll.202409648","DOIUrl":null,"url":null,"abstract":"Solid oxide cells (SOCs) are promising electrochemical energy conversion/storage devices for the generation of electricity and/or valuable chemical products due to the high efficiency, superior reversibility and low emissions. However, the large-scale applications of SOCs are strongly limited by the inferior stability and high costs due to the high operational temperatures (≈800 °C). Extensive researches are reported on reducing the operating temperatures of SOCs to suppress the costs and improve the long-term stability. Nevertheless, as a key component in SOCs, the electrolytes suffer from inferior ionic conductivities at reduced temperatures. Nanotechnology and relevant nanomaterials display great potential to improve the ionic conductivities and durability of electrolytes for low-temperature (LT)-SOCs due to the advantageous functionalities including distinct surface/interface properties and the creation of nanoeffect. Herein, a timely review about the utilization of nanotechnology for the design and fabrication of high-performance electrolytes for LT-SOCs is presented from the aspects of nanostructuring methodology and nanomaterial design strategies. The current limitations, remaining challenges, and future research directions related to the use of nanotechnology and nanomaterials in the development of electrolytes for LT-SOCs are also presented and discussed. Here valuable guidelines are provided for the further advancement of nanotechnology-based energy conversion/storage technologies.","PeriodicalId":228,"journal":{"name":"Small","volume":"61 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409648","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid oxide cells (SOCs) are promising electrochemical energy conversion/storage devices for the generation of electricity and/or valuable chemical products due to the high efficiency, superior reversibility and low emissions. However, the large-scale applications of SOCs are strongly limited by the inferior stability and high costs due to the high operational temperatures (≈800 °C). Extensive researches are reported on reducing the operating temperatures of SOCs to suppress the costs and improve the long-term stability. Nevertheless, as a key component in SOCs, the electrolytes suffer from inferior ionic conductivities at reduced temperatures. Nanotechnology and relevant nanomaterials display great potential to improve the ionic conductivities and durability of electrolytes for low-temperature (LT)-SOCs due to the advantageous functionalities including distinct surface/interface properties and the creation of nanoeffect. Herein, a timely review about the utilization of nanotechnology for the design and fabrication of high-performance electrolytes for LT-SOCs is presented from the aspects of nanostructuring methodology and nanomaterial design strategies. The current limitations, remaining challenges, and future research directions related to the use of nanotechnology and nanomaterials in the development of electrolytes for LT-SOCs are also presented and discussed. Here valuable guidelines are provided for the further advancement of nanotechnology-based energy conversion/storage technologies.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.