Pt-Skin Coated PtNi Alloy in Carbon Nanoshells for Enhanced Hydrogen Evolution Activity and Durability

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-21 DOI:10.1002/smll.202503294
Yuandong Yang, Jie Liu, Chen Sun, Yuting Fu, Qipeng Li, Jinjie Qian
{"title":"Pt-Skin Coated PtNi Alloy in Carbon Nanoshells for Enhanced Hydrogen Evolution Activity and Durability","authors":"Yuandong Yang, Jie Liu, Chen Sun, Yuting Fu, Qipeng Li, Jinjie Qian","doi":"10.1002/smll.202503294","DOIUrl":null,"url":null,"abstract":"Hydrogen, as an environmentally sustainable energy carrier, offers substantial potential for addressing the global energy crisis. The development of highly efficient catalysts to accelerate the hydrogen evolution reaction (HER) is critical for the realization of electrochemical hydrogen production via water splitting. Herein, a novel heterogeneous catalyst consisting of PtNi nanoalloys with Pt-enriched surfaces is obtained, which are uniformly distributed within nitrogen-doped hollow carbon nanoshells derived from a complex of Ni-EDTA (ethylene diamine tetraacetate). Remarkably, the fabricated NE-PtNiNC catalyst demonstrates exceptional HER performance, exhibiting an ultra-low overpotential of 3 mV at 10 mA cm<sup>−2</sup> and 6.8-fold higher mass activity compared to the commercial Pt/C catalyst, positioning it as one of the most advanced catalysts to date. Additionally, it shows outstanding stability over 200 h and exhibits promising potential for practical deployment in two-electrode water electrolysis systems. Theoretical analyses further reveal that the Pt-skin@PtNi structure, with its lowest d-band center, fosters a more pronounced overlap of the 5d electron cloud at the surface Pt sites. This interaction results in increased electron density on the Pt skin, facilitating water dissociation and significantly enhancing the intrinsic HER activity and durability.","PeriodicalId":228,"journal":{"name":"Small","volume":"22 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202503294","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen, as an environmentally sustainable energy carrier, offers substantial potential for addressing the global energy crisis. The development of highly efficient catalysts to accelerate the hydrogen evolution reaction (HER) is critical for the realization of electrochemical hydrogen production via water splitting. Herein, a novel heterogeneous catalyst consisting of PtNi nanoalloys with Pt-enriched surfaces is obtained, which are uniformly distributed within nitrogen-doped hollow carbon nanoshells derived from a complex of Ni-EDTA (ethylene diamine tetraacetate). Remarkably, the fabricated NE-PtNiNC catalyst demonstrates exceptional HER performance, exhibiting an ultra-low overpotential of 3 mV at 10 mA cm−2 and 6.8-fold higher mass activity compared to the commercial Pt/C catalyst, positioning it as one of the most advanced catalysts to date. Additionally, it shows outstanding stability over 200 h and exhibits promising potential for practical deployment in two-electrode water electrolysis systems. Theoretical analyses further reveal that the Pt-skin@PtNi structure, with its lowest d-band center, fosters a more pronounced overlap of the 5d electron cloud at the surface Pt sites. This interaction results in increased electron density on the Pt skin, facilitating water dissociation and significantly enhancing the intrinsic HER activity and durability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信