Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-21 DOI:10.1002/smll.202500253
Huimin Yi, Chenyi Wang, Baoxin Ge, Fangjie Xu, Pengyang Jiang, Min Zhou, Fangshu Xing, Caijin Huang
{"title":"Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling","authors":"Huimin Yi, Chenyi Wang, Baoxin Ge, Fangjie Xu, Pengyang Jiang, Min Zhou, Fangshu Xing, Caijin Huang","doi":"10.1002/smll.202500253","DOIUrl":null,"url":null,"abstract":"Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (H<sub>ads</sub>) migrate from adjacent Cu sites to active S atoms, promoting H<sub>2</sub> production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H<sub>2</sub> production rate of 7400 µmol g<sup>−1</sup> h<sup>−1</sup>. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.","PeriodicalId":228,"journal":{"name":"Small","volume":"37 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202500253","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (Hads) migrate from adjacent Cu sites to active S atoms, promoting H2 production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H2 production rate of 7400 µmol g−1 h−1. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信