Ultra-high response and selectivity of triethylamine sensor based on NiO/Pd/SnO2 multiple heterojunctions composite

IF 8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Gaojie Li , Xueyang Li , Linqi Zhang , Zemin Zhou , Yihui Li , Hui Li , Ke Ning , Xuedong Chen
{"title":"Ultra-high response and selectivity of triethylamine sensor based on NiO/Pd/SnO2 multiple heterojunctions composite","authors":"Gaojie Li ,&nbsp;Xueyang Li ,&nbsp;Linqi Zhang ,&nbsp;Zemin Zhou ,&nbsp;Yihui Li ,&nbsp;Hui Li ,&nbsp;Ke Ning ,&nbsp;Xuedong Chen","doi":"10.1016/j.snb.2025.137652","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple heterojunctions composite may be an effective way to simultaneously improve the selectivity and response of metal oxide semiconductor-based sensors, as well as reduce the working temperature. In this study, the NiO/Pd/SnO<sub>2</sub> composite including PN heterojunction (NiO/SnO<sub>2</sub>) and Schottky junction (Pd/SnO<sub>2</sub>) was successfully prepared through three steps. The morphology, structure, and chemical state of surface elements were characterized by XRD, SEM, TEM, and XPS. Gas sensing performance displayed that the NiO/Pd/SnO<sub>2</sub> sensor exhibited ultra-high response (1320) and selectivity (&gt;4.1), low detect limit (0.1 ppm) and excellent long-term stability to 100 ppm of TEA at 275°C. Compared with SnO<sub>2</sub> and NiO/SnO<sub>2</sub>, Pd/SnO<sub>2</sub> and NiO/Pd/SnO<sub>2</sub> sensors exhibited higher response and lower working temperature. Compared with Pd/SnO<sub>2</sub>, the NiO/Pd/SnO<sub>2</sub> sensor exhibited higher selectivity. In addition, the adsorptions of oxygen and TEA on the surface of samples have also been simulated through DFT calculations. Based on the characterization and calculation results, the excellent sensing performance of the NiO/Pd/SnO<sub>2</sub> sensor can be attributed to the multiple heterojunctions and strong activation effect of Pd on oxygen and TEA molecules.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"435 ","pages":"Article 137652"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400525004277","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple heterojunctions composite may be an effective way to simultaneously improve the selectivity and response of metal oxide semiconductor-based sensors, as well as reduce the working temperature. In this study, the NiO/Pd/SnO2 composite including PN heterojunction (NiO/SnO2) and Schottky junction (Pd/SnO2) was successfully prepared through three steps. The morphology, structure, and chemical state of surface elements were characterized by XRD, SEM, TEM, and XPS. Gas sensing performance displayed that the NiO/Pd/SnO2 sensor exhibited ultra-high response (1320) and selectivity (>4.1), low detect limit (0.1 ppm) and excellent long-term stability to 100 ppm of TEA at 275°C. Compared with SnO2 and NiO/SnO2, Pd/SnO2 and NiO/Pd/SnO2 sensors exhibited higher response and lower working temperature. Compared with Pd/SnO2, the NiO/Pd/SnO2 sensor exhibited higher selectivity. In addition, the adsorptions of oxygen and TEA on the surface of samples have also been simulated through DFT calculations. Based on the characterization and calculation results, the excellent sensing performance of the NiO/Pd/SnO2 sensor can be attributed to the multiple heterojunctions and strong activation effect of Pd on oxygen and TEA molecules.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors and Actuators B: Chemical
Sensors and Actuators B: Chemical 工程技术-电化学
CiteScore
14.60
自引率
11.90%
发文量
1776
审稿时长
3.2 months
期刊介绍: Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信