Dynamic doping and interphase stabilization for cobalt-free and high-voltage Lithium metal batteries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ziqing Yao, Tianji Fu, Tao Pan, Chongyang Luo, Man Pang, Shizhao Xiong, Qingpeng Guo, Yujie Li, Shuangke Liu, Chunman Zheng, Weiwei Sun
{"title":"Dynamic doping and interphase stabilization for cobalt-free and high-voltage Lithium metal batteries","authors":"Ziqing Yao, Tianji Fu, Tao Pan, Chongyang Luo, Man Pang, Shizhao Xiong, Qingpeng Guo, Yujie Li, Shuangke Liu, Chunman Zheng, Weiwei Sun","doi":"10.1038/s41467-025-58110-z","DOIUrl":null,"url":null,"abstract":"<p>Cobalt-free spinel LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) positive electrodes, promise high energy density when coupled with lithium negative electrodes, due to the high discharge voltage platform. However, the intrinsic dissolution of Mn in positive electrode, electrolyte decomposition at high voltage, and dendrite growth on lithium severely compromise cycling stability, limiting the practical application. Herein, we propose ferrocene hexafluorophosphate as an electrolyte additive to achieve dynamic doping of Fe<sup>3+</sup> in positive electrodes during electrochemical cycling. Furthermore, additive molecule preferentially decomposes at both the positive and negative electrode interfaces, forming thin, dense inorganic positive electrode electrolyte interphase and F, P-rich inorganic solid electrolyte interphase respectively, effectively stabilizing electrode interfaces. Consequently, the Li | |LNMO batteries based on modified electrolytes effectively enhance cycling stability and rate performance at a charge cutoff voltage of 4.9 V and an LNMO pouch cell performs consistently over 160 cycles. Additionally, the efficacy of ferrocene hexafluorophosphate extends beyond LNMO, demonstrating its universal applicability in stabilizing positive electrodes operating at challenging voltages, including LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>, LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>, and LiCoO<sub>2</sub> and a 470 Wh kg<sup>−1</sup> level Li metal pouch cell was successfully realized.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"125 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58110-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt-free spinel LiNi0.5Mn1.5O4 (LNMO) positive electrodes, promise high energy density when coupled with lithium negative electrodes, due to the high discharge voltage platform. However, the intrinsic dissolution of Mn in positive electrode, electrolyte decomposition at high voltage, and dendrite growth on lithium severely compromise cycling stability, limiting the practical application. Herein, we propose ferrocene hexafluorophosphate as an electrolyte additive to achieve dynamic doping of Fe3+ in positive electrodes during electrochemical cycling. Furthermore, additive molecule preferentially decomposes at both the positive and negative electrode interfaces, forming thin, dense inorganic positive electrode electrolyte interphase and F, P-rich inorganic solid electrolyte interphase respectively, effectively stabilizing electrode interfaces. Consequently, the Li | |LNMO batteries based on modified electrolytes effectively enhance cycling stability and rate performance at a charge cutoff voltage of 4.9 V and an LNMO pouch cell performs consistently over 160 cycles. Additionally, the efficacy of ferrocene hexafluorophosphate extends beyond LNMO, demonstrating its universal applicability in stabilizing positive electrodes operating at challenging voltages, including LiNi0.8Co0.1Mn0.1O2, LiNi0.6Co0.2Mn0.2O2, and LiCoO2 and a 470 Wh kg−1 level Li metal pouch cell was successfully realized.

Abstract Image

无钴高压锂金属电池的动态掺杂与相间稳定
无钴尖晶石LiNi0.5Mn1.5O4 (LNMO)正极,由于高放电电压平台,当与锂负极耦合时,保证高能量密度。然而,锰在正极的固有溶解、电解液在高压下的分解以及锂上枝晶的生长严重影响了循环稳定性,限制了实际应用。在此,我们提出了六氟磷酸二茂铁作为电解质添加剂,以实现电化学循环过程中Fe3+在正极的动态掺杂。添加剂分子在正极和负极界面均优先分解,分别形成薄而致密的无机正极电解质界面和富F、p的无机固体电解质界面,有效稳定了电极界面。因此,基于改性电解质的Li | |LNMO电池在4.9 V充电截止电压下有效地提高了循环稳定性和倍率性能,并且LNMO袋状电池在160次循环中保持稳定。此外,六氟磷酸二茂铁的功效超越了LNMO,证明了其在稳定工作在挑战性电压下的正极(包括LiNi0.8Co0.1Mn0.1O2, LiNi0.6Co0.2Mn0.2O2和LiCoO2)的普遍适用,并成功实现了470 Wh kg−1级的锂金属袋电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信