Enhanced charge carrier transport in TiO2/COF S-scheme heterojunction for efficient photocatalytic H2O2 production

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Liu, Meng Li, Tao Liu, Zhen Wu, Liuyang Zhang
{"title":"Enhanced charge carrier transport in TiO2/COF S-scheme heterojunction for efficient photocatalytic H2O2 production","authors":"Yang Liu, Meng Li, Tao Liu, Zhen Wu, Liuyang Zhang","doi":"10.1016/j.jmst.2025.03.005","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a crucial oxidant with diverse industrial applications, yet its conventional synthesis suffers from high energy consumption and hazardous byproducts. Photocatalysis offers a sustainable alternative, but its efficiency is often compromised by rapid charge recombination. Herein, we reported the rational design of a TiO<sub>2</sub>/TD-COF S-scheme heterojunction, which achieved a remarkable H<sub>2</sub>O<sub>2</sub> production rate of 2162.3 μmol g⁻<sup>1</sup> h⁻<sup>1</sup>, representing almost 14-fold enhancement compared to pristine TiO<sub>2</sub>. Through in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and femtosecond transient absorption spectroscopy (fs-TAS), we demonstrate an ultrafast charge transfer driven by internal electric field (IEF) that efficiently separates photogenerated carriers while preserving their redox potentials. Furthermore, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and electron paramagnetic resonance (EPR) spectroscopy provide direct experimental evidence for the dual-pathway mechanism, involving both the oxygen reduction reaction (ORR) and water oxidation reaction (WOR). This work demonstrates the potential of S-scheme heterojunction in overcoming the limitations of traditional photocatalytic systems, offering a scalable and sustainable approach for solar-driven H<sub>2</sub>O<sub>2</sub> production.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"21 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.03.005","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen peroxide (H2O2) is a crucial oxidant with diverse industrial applications, yet its conventional synthesis suffers from high energy consumption and hazardous byproducts. Photocatalysis offers a sustainable alternative, but its efficiency is often compromised by rapid charge recombination. Herein, we reported the rational design of a TiO2/TD-COF S-scheme heterojunction, which achieved a remarkable H2O2 production rate of 2162.3 μmol g⁻1 h⁻1, representing almost 14-fold enhancement compared to pristine TiO2. Through in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and femtosecond transient absorption spectroscopy (fs-TAS), we demonstrate an ultrafast charge transfer driven by internal electric field (IEF) that efficiently separates photogenerated carriers while preserving their redox potentials. Furthermore, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and electron paramagnetic resonance (EPR) spectroscopy provide direct experimental evidence for the dual-pathway mechanism, involving both the oxygen reduction reaction (ORR) and water oxidation reaction (WOR). This work demonstrates the potential of S-scheme heterojunction in overcoming the limitations of traditional photocatalytic systems, offering a scalable and sustainable approach for solar-driven H2O2 production.

Abstract Image

过氧化氢(H2O2)是一种重要的氧化剂,具有多种工业用途,但其传统合成方法存在能耗高和副产品有害的问题。光催化技术提供了一种可持续的替代方法,但其效率往往因电荷快速重组而受到影响。在此,我们报告了一种 TiO2/TD-COF S 型异质结的合理设计,其 H2O2 生成率达到了 2162.3 μmol g-1 h-1 的显著水平,与原始 TiO2 相比提高了近 14 倍。通过原位辐照 X 射线光电子能谱(ISI-XPS)和飞秒瞬态吸收光谱(fs-TAS),我们展示了由内电场(IEF)驱动的超快电荷转移,它能有效地分离光生载流子,同时保持其氧化还原电位。此外,原位漫反射红外傅立叶变换光谱(DRIFTS)和电子顺磁共振(EPR)光谱为涉及氧还原反应(ORR)和水氧化反应(WOR)的双途径机制提供了直接的实验证据。这项工作证明了 S 型异质结在克服传统光催化系统局限性方面的潜力,为太阳能驱动的 H2O2 生产提供了一种可扩展、可持续的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信