Unraveling Electrode Surface Chemistry in Determining Interphase Stability and Deposition Homogeneity for Anode‐free Potassium Metal Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenlu Yu, Qun Liu, Danni Wang, Jie Shi, Dengyun Zhai, Biao Zhang
{"title":"Unraveling Electrode Surface Chemistry in Determining Interphase Stability and Deposition Homogeneity for Anode‐free Potassium Metal Batteries","authors":"Zhenlu Yu, Qun Liu, Danni Wang, Jie Shi, Dengyun Zhai, Biao Zhang","doi":"10.1002/anie.202502091","DOIUrl":null,"url":null,"abstract":"Potassium metal batteries with an anode‐less/‐free configuration could realize competitive energy density, which requires exceptional potassium plating/stripping reversibility via guiding smooth potassium growth and building mechanically stable solid electrolyte interphase (SEI). Electrolyte engineering has been the most widely adopted strategy, but there is less understanding of the electrode effect. We demonstrate that the extent of electrolyte decomposition could also be regulated through electrode surface modification. Elevating the work function of an Al current collector by coating a thin layer of Ni‐decorated carbon nanofiber could greatly suppress the copious solvent reduction, leading to the formation of inorganic‐rich SEIs. Such SEIs possess a large elastic deformation energy to accommodate the volume change and a high ionic conductivity to boost the reaction kinetics. Moreover, the potassiophilic nickel species offer abundant active sites to induce homogeneous potassium deposition. Benefiting from the synergy of stable interphases and promoted nucleation, the modified Al enables a 4.4 V anode‐free cell in a normal‐concentration electrolyte without anode precycling.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"34 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202502091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Potassium metal batteries with an anode‐less/‐free configuration could realize competitive energy density, which requires exceptional potassium plating/stripping reversibility via guiding smooth potassium growth and building mechanically stable solid electrolyte interphase (SEI). Electrolyte engineering has been the most widely adopted strategy, but there is less understanding of the electrode effect. We demonstrate that the extent of electrolyte decomposition could also be regulated through electrode surface modification. Elevating the work function of an Al current collector by coating a thin layer of Ni‐decorated carbon nanofiber could greatly suppress the copious solvent reduction, leading to the formation of inorganic‐rich SEIs. Such SEIs possess a large elastic deformation energy to accommodate the volume change and a high ionic conductivity to boost the reaction kinetics. Moreover, the potassiophilic nickel species offer abundant active sites to induce homogeneous potassium deposition. Benefiting from the synergy of stable interphases and promoted nucleation, the modified Al enables a 4.4 V anode‐free cell in a normal‐concentration electrolyte without anode precycling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信