Embryonic exposure to prednisone induces bone developmental toxicity in zebrafish: characteristics and molecular mechanisms

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jiaqi Wang, Yangfan Shangguan, Fei Long, Yu Guo, Hui Wang, Liaobin Chen
{"title":"Embryonic exposure to prednisone induces bone developmental toxicity in zebrafish: characteristics and molecular mechanisms","authors":"Jiaqi Wang, Yangfan Shangguan, Fei Long, Yu Guo, Hui Wang, Liaobin Chen","doi":"10.1016/j.jhazmat.2025.137996","DOIUrl":null,"url":null,"abstract":"As a synthetic glucocorticoid, prednisone has been widely used in autoimmune diseases, recurrent abortion and asthma during pregnancy. Although studies suggested that glucocorticoid exposure during pregnancy have developmental toxicity, systematic research on the characteristics of the developmental toxicity of prednisone is lacking. This study intends to construct embryonic prednisone exposure (EPE) model to observe its bone developmental toxicity characteristics of prednisone and explore the mechanism. The results showed that EPE can shortened body and head length, reduced eye and head area, decreased operculum mineralization area, reduced mineralized vertebrae number, shortened ceratohyal and palatoquadrate cartilage length, and decreased expression of key osteogenic differentiation and cartilage development genes. The toxicity to osteogenesis is more severe than chondrogenesis. The toxicity caused by exposure in the middle and terminal stages of embryogenesis is more serious and shows a concentration-effect relationship. We confirmed that Gr/Hdac6 signaling activation mediates prednisone-induced inhibition of osteoblast differentiation by epigenetically regulating the Postnb/Wnt/β-catenin signaling pathway. The results of this study systematically demonstrate the characteristics of prednisone-induced systemic, bone, and cartilage developmental toxicity, and clarify the epigenetic mechanism of its osteogenic developmental toxicity. This provides theoretical and experimental evidence for the safe use of prednisone during pregnancy and the determination of early monitoring targets for bone developmental toxicity.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"56 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137996","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a synthetic glucocorticoid, prednisone has been widely used in autoimmune diseases, recurrent abortion and asthma during pregnancy. Although studies suggested that glucocorticoid exposure during pregnancy have developmental toxicity, systematic research on the characteristics of the developmental toxicity of prednisone is lacking. This study intends to construct embryonic prednisone exposure (EPE) model to observe its bone developmental toxicity characteristics of prednisone and explore the mechanism. The results showed that EPE can shortened body and head length, reduced eye and head area, decreased operculum mineralization area, reduced mineralized vertebrae number, shortened ceratohyal and palatoquadrate cartilage length, and decreased expression of key osteogenic differentiation and cartilage development genes. The toxicity to osteogenesis is more severe than chondrogenesis. The toxicity caused by exposure in the middle and terminal stages of embryogenesis is more serious and shows a concentration-effect relationship. We confirmed that Gr/Hdac6 signaling activation mediates prednisone-induced inhibition of osteoblast differentiation by epigenetically regulating the Postnb/Wnt/β-catenin signaling pathway. The results of this study systematically demonstrate the characteristics of prednisone-induced systemic, bone, and cartilage developmental toxicity, and clarify the epigenetic mechanism of its osteogenic developmental toxicity. This provides theoretical and experimental evidence for the safe use of prednisone during pregnancy and the determination of early monitoring targets for bone developmental toxicity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信