Layered Clay Confined Single-Atom Catalyst for Enhanced Radical Pathway to Achieve Ultrafast Degradation of Bisphenol A

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Han Zhao, Kexin Yin, Qinyan Yue, Weiyan Yin, Baoyu Gao, Yue Gao
{"title":"Layered Clay Confined Single-Atom Catalyst for Enhanced Radical Pathway to Achieve Ultrafast Degradation of Bisphenol A","authors":"Han Zhao, Kexin Yin, Qinyan Yue, Weiyan Yin, Baoyu Gao, Yue Gao","doi":"10.1016/j.jhazmat.2025.137971","DOIUrl":null,"url":null,"abstract":"Seeking a technically promising method and cost-effective material to synthesize carrier-supported single-atom catalysts has attracted on-going research interests to overcome the low productivity and high costs for their industrial application. Montmorillonite (MT), a natural silicate clay mineral, has specific two-dimensional layered structure, and could be an excellent carrier, which creates a unique microenvironment to enhance molecule adsorption and interfacial reactions within the single atoms, free radicals and pollutants in the heterogeneous catalytic system. We synthesized cobalt single-atom catalyst (Co-SAC) by ball milling MT and cobalt salt using surface and spatial confinement strategy. Co-SAC/MT catalyst was used to activate peroxymonosulfate for degrading emerging contaminants bisphenol A (BPA). Characterization results revealed that Co single atoms were confined in the interlayer of MT as Co-O<sub>6</sub>-Si. Co-SAC/MT catalyst demonstrated remarkable molecular interaction capabilities to shorten mass transfer distance of free radical diffusion to the target pollutants, enhance the utilization rate of free radicals, and thus improve the efficiency of oxidation reaction. The BPA solution was completely degraded in 3<!-- --> <!-- -->min, with a mineralization rate of 75.7% in 10<!-- --> <!-- -->min. This study provides a simple and efficient method for the preparation of single-atom catalysts, which is expected to achieve large-scale production of single-atom catalysts.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"92 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137971","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Seeking a technically promising method and cost-effective material to synthesize carrier-supported single-atom catalysts has attracted on-going research interests to overcome the low productivity and high costs for their industrial application. Montmorillonite (MT), a natural silicate clay mineral, has specific two-dimensional layered structure, and could be an excellent carrier, which creates a unique microenvironment to enhance molecule adsorption and interfacial reactions within the single atoms, free radicals and pollutants in the heterogeneous catalytic system. We synthesized cobalt single-atom catalyst (Co-SAC) by ball milling MT and cobalt salt using surface and spatial confinement strategy. Co-SAC/MT catalyst was used to activate peroxymonosulfate for degrading emerging contaminants bisphenol A (BPA). Characterization results revealed that Co single atoms were confined in the interlayer of MT as Co-O6-Si. Co-SAC/MT catalyst demonstrated remarkable molecular interaction capabilities to shorten mass transfer distance of free radical diffusion to the target pollutants, enhance the utilization rate of free radicals, and thus improve the efficiency of oxidation reaction. The BPA solution was completely degraded in 3 min, with a mineralization rate of 75.7% in 10 min. This study provides a simple and efficient method for the preparation of single-atom catalysts, which is expected to achieve large-scale production of single-atom catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信