Cosmological Predictions for Minor Axis Stellar Density Profiles in the Inner Regions of Milky Way–mass Galaxies

Madeline Lucey, Robyn E. Sanderson, Danny Horta, Aritra Kundu, Philip F. Hopkins, Arpit Arora, Jasjeev Singh and Nondh Panithanpaisal
{"title":"Cosmological Predictions for Minor Axis Stellar Density Profiles in the Inner Regions of Milky Way–mass Galaxies","authors":"Madeline Lucey, Robyn E. Sanderson, Danny Horta, Aritra Kundu, Philip F. Hopkins, Arpit Arora, Jasjeev Singh and Nondh Panithanpaisal","doi":"10.3847/1538-4357/adb9e8","DOIUrl":null,"url":null,"abstract":"ΛCDM cosmology predicts the hierarchical formation of galaxies, which build up mass by merger events and accreting smaller systems. The stellar halo of the Milky Way (MW) has proven to be useful a tool for tracing this accretion history. However, most of this work has focused on the outer halo where dynamical times are large and the dynamical properties of accreted systems are preserved. In this work, we investigate the inner galaxy regime, where dynamical times are relatively small and systems are generally completely phase mixed. Using the FIRE-2 and Auriga cosmological zoom-in simulation suites of MW-mass galaxies, we find the stellar density profiles along the minor axis (perpendicular to the galactic disk) within the Navarro–Frenk–White scale radii (R ≈ 15 kpc) are best described as an exponential disk with scale height < 0.3 kpc and a power-law component with slope α ≈ −4. The stellar density amplitude and slope for the power-law component are not significantly correlated with metrics of the galaxy’s accretion history. Instead, we find the stellar profiles strongly correlate with the dark matter profile. Across simulation suites, the galaxies studied in this work have a stellar-to-dark-matter mass ratio that decreases as 1/r2 along the minor axis.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adb9e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ΛCDM cosmology predicts the hierarchical formation of galaxies, which build up mass by merger events and accreting smaller systems. The stellar halo of the Milky Way (MW) has proven to be useful a tool for tracing this accretion history. However, most of this work has focused on the outer halo where dynamical times are large and the dynamical properties of accreted systems are preserved. In this work, we investigate the inner galaxy regime, where dynamical times are relatively small and systems are generally completely phase mixed. Using the FIRE-2 and Auriga cosmological zoom-in simulation suites of MW-mass galaxies, we find the stellar density profiles along the minor axis (perpendicular to the galactic disk) within the Navarro–Frenk–White scale radii (R ≈ 15 kpc) are best described as an exponential disk with scale height < 0.3 kpc and a power-law component with slope α ≈ −4. The stellar density amplitude and slope for the power-law component are not significantly correlated with metrics of the galaxy’s accretion history. Instead, we find the stellar profiles strongly correlate with the dark matter profile. Across simulation suites, the galaxies studied in this work have a stellar-to-dark-matter mass ratio that decreases as 1/r2 along the minor axis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信