Optical chaotic signal recovery in turbulent environments using a programmable optical processor

IF 20.6 Q1 OPTICS
Sara Zaminga, Andres Martinez, Heming Huang, Damien Rontani, Francesco Morichetti, Andrea Melloni, Frédéric Grillot
{"title":"Optical chaotic signal recovery in turbulent environments using a programmable optical processor","authors":"Sara Zaminga, Andres Martinez, Heming Huang, Damien Rontani, Francesco Morichetti, Andrea Melloni, Frédéric Grillot","doi":"10.1038/s41377-025-01784-3","DOIUrl":null,"url":null,"abstract":"<p>Optical chaos offers a promising approach to establishing secure communication at high data rates in a shared physical channel, like optical fibers and free space. However, the required synchronization between the transmitter and the receiver can be severely impaired by the nonidealities of the optical link. In particular, free-space optical communications are affected by atmospheric turbulence, which causes beam scintillation and results in time-varying fading of the optical intensity at the receiver side. In this work, we investigate experimentally the propagation of a chaotic signal in an indoor optical link with controllable synthetic turbulence, and we show that the degradation of chaos properties caused by the turbulent environment can be fully mitigated in the optical domain using an adaptive multi-aperture receiver. The proposed receiver integrates a two-dimensional array of optical antennas and a programmable optical processor (POP) on a silicon photonic platform. With respect to a conventional single-aperture receiver, the POP-assisted receiver recovers the complex dynamics of the optical chaos, ensuring a high degree of correlation between the transmitted signal and the received signal, even for a high degree of turbulence. Our results demonstrate the possibility of establishing and maintaining reliable, secure communication in a chaos-based crypto-system in a free space optical link of km-range length.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"34 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01784-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical chaos offers a promising approach to establishing secure communication at high data rates in a shared physical channel, like optical fibers and free space. However, the required synchronization between the transmitter and the receiver can be severely impaired by the nonidealities of the optical link. In particular, free-space optical communications are affected by atmospheric turbulence, which causes beam scintillation and results in time-varying fading of the optical intensity at the receiver side. In this work, we investigate experimentally the propagation of a chaotic signal in an indoor optical link with controllable synthetic turbulence, and we show that the degradation of chaos properties caused by the turbulent environment can be fully mitigated in the optical domain using an adaptive multi-aperture receiver. The proposed receiver integrates a two-dimensional array of optical antennas and a programmable optical processor (POP) on a silicon photonic platform. With respect to a conventional single-aperture receiver, the POP-assisted receiver recovers the complex dynamics of the optical chaos, ensuring a high degree of correlation between the transmitted signal and the received signal, even for a high degree of turbulence. Our results demonstrate the possibility of establishing and maintaining reliable, secure communication in a chaos-based crypto-system in a free space optical link of km-range length.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信