A sensitivity curve approach to tuning a pulsar timing array in the detection era

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Jeremy G Baier, Jeffrey S Hazboun and Joseph D Romano
{"title":"A sensitivity curve approach to tuning a pulsar timing array in the detection era","authors":"Jeremy G Baier, Jeffrey S Hazboun and Joseph D Romano","doi":"10.1088/1361-6382/adbbab","DOIUrl":null,"url":null,"abstract":"As pulsar timing arrays (PTAs) transition into the detection era of the stochastic gravitational wave background (GWB), it is important for PTA collaborations to review and possibly revise their observing campaigns. The detection of a ‘single source’ would be a boon for gravitational astrophysics, as such a source would emit gravitational waves for millions of years in the PTA frequency band. Here we present generic methods for studying the effects of various observational strategies, taking advantage of detector sensitivity curves, i.e. noise-averaged, frequency-domain detection statistics. The statistical basis for these methods is presented along with myriad examples of how to tune a detector towards single, deterministic signals or a stochastic background. We demonstrate that trading observations of the worst pulsars for high cadence campaigns on the best pulsars increases sensitivity to single sources at high frequencies while hedging losses in GWB and single source sensitivity at low frequencies. We also find that sky-targeted observing campaigns yield minimal sensitivity improvements compared with other PTA tuning options. Lastly, we show the importance of the uncorrelated half of the GWB, i.e. the pulsar-term, as an increasingly prominent sources of noise and show the impact of this emerging noise source on various PTA configurations.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adbbab","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

As pulsar timing arrays (PTAs) transition into the detection era of the stochastic gravitational wave background (GWB), it is important for PTA collaborations to review and possibly revise their observing campaigns. The detection of a ‘single source’ would be a boon for gravitational astrophysics, as such a source would emit gravitational waves for millions of years in the PTA frequency band. Here we present generic methods for studying the effects of various observational strategies, taking advantage of detector sensitivity curves, i.e. noise-averaged, frequency-domain detection statistics. The statistical basis for these methods is presented along with myriad examples of how to tune a detector towards single, deterministic signals or a stochastic background. We demonstrate that trading observations of the worst pulsars for high cadence campaigns on the best pulsars increases sensitivity to single sources at high frequencies while hedging losses in GWB and single source sensitivity at low frequencies. We also find that sky-targeted observing campaigns yield minimal sensitivity improvements compared with other PTA tuning options. Lastly, we show the importance of the uncorrelated half of the GWB, i.e. the pulsar-term, as an increasingly prominent sources of noise and show the impact of this emerging noise source on various PTA configurations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信