Solving non-Hermitian physics for optical manipulation on a quantum computer

IF 20.6 Q1 OPTICS
Yu-ang Fan, Xiao Li, Shijie Wei, Yishan Li, Xinyue Long, Hongfeng Liu, Xinfang Nie, Jack Ng, Dawei Lu
{"title":"Solving non-Hermitian physics for optical manipulation on a quantum computer","authors":"Yu-ang Fan, Xiao Li, Shijie Wei, Yishan Li, Xinyue Long, Hongfeng Liu, Xinfang Nie, Jack Ng, Dawei Lu","doi":"10.1038/s41377-025-01769-2","DOIUrl":null,"url":null,"abstract":"<p>Intense laser light, with its ability to trap small particles, is providing us unprecedented access to the microscopic world. Nevertheless, owing to its open nature, optical force is nonconservative and can only be described by a non-Hermitian theory. This non-Hermiticity sets such system apart from conventional systems and has offered rich physics, such as the possession of the exceptional points. Consequently, analyzing and demonstrating the dynamics of large optically-bound clusters becomes an intricate challenge. Here, we developed a scalable quantum approach that allows us to predict the trajectories of optically trapped particles and tackle the associated non-Hermitian physics. This approach is based on the linear combination of unitary operations. With this, we experimentally revealed the non-Hermiticity and exceptional point for a single or multiple particles trapped by optical force fields, using a nuclear magnetic resonance quantum processor. Our method’s scalability and stability have offering a promising path for large-scale optical manipulation with non-Hermitian dynamics.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"24 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01769-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Intense laser light, with its ability to trap small particles, is providing us unprecedented access to the microscopic world. Nevertheless, owing to its open nature, optical force is nonconservative and can only be described by a non-Hermitian theory. This non-Hermiticity sets such system apart from conventional systems and has offered rich physics, such as the possession of the exceptional points. Consequently, analyzing and demonstrating the dynamics of large optically-bound clusters becomes an intricate challenge. Here, we developed a scalable quantum approach that allows us to predict the trajectories of optically trapped particles and tackle the associated non-Hermitian physics. This approach is based on the linear combination of unitary operations. With this, we experimentally revealed the non-Hermiticity and exceptional point for a single or multiple particles trapped by optical force fields, using a nuclear magnetic resonance quantum processor. Our method’s scalability and stability have offering a promising path for large-scale optical manipulation with non-Hermitian dynamics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信