{"title":"Functional characterization of four soybean C2H2 zinc-finger genes in <i>Phytophthora</i> resistance.","authors":"Yuting Chen, Xinyue Liu, Yanyan Zhou, Yu Zheng, Yating Xiao, Xingxing Yuan, Qiang Yan, Xin Chen","doi":"10.1080/15592324.2025.2481185","DOIUrl":null,"url":null,"abstract":"<p><p>Soybean (<i>Glycine max</i>) is one of the most important industrial and oilseed crops; however, the yield is threatened by the invasion of various pathogens. Soybean stem and root rot, caused by <i>Phytophthora sojae</i>, is a destructive disease that significantly damages soybean production worldwide. C2H2 zinc finger protein (C2H2-ZFP) is a large transcription factor family in plants that plays crucial roles in stress response and hormone signal transduction. Given its importance, we analyzed the expression patterns of C2H2-ZFP family genes in response to <i>P. sojae</i> infection and selected four candidate genes to explore their molecular characteristics and functions related to <i>P. sojae</i> resistance. Subcellular localization analysis indicated that three ZFPs (GmZFP2, GmZFP3, and GmZFP4) were localized in the nucleus, while GmZFP1 was found in both the nucleus and plasma membrane. Dual-luciferase transient expression analysis revealed that all four ZFPs possessed transcriptional repression activation. Further transient expression in <i>N. benthamiana</i> leaves demonstrated that <i>GmZFP2</i> induced significant cell death and reactive oxygen species (ROS) accumulation. <i>GmZFP2</i> significantly enhanced the resistance to <i>Phytophthora</i> pathogens in <i>N. benthamiana</i> leaves and soybean hairy roots. This study provides insights in to the functional characterization of soybean ZFPs in <i>Phytophthora</i> resistance and demonstrates that <i>GmZFP2</i> plays a positive role in <i>P. sojae</i> resistance in soybeans.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2481185"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2481185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean (Glycine max) is one of the most important industrial and oilseed crops; however, the yield is threatened by the invasion of various pathogens. Soybean stem and root rot, caused by Phytophthora sojae, is a destructive disease that significantly damages soybean production worldwide. C2H2 zinc finger protein (C2H2-ZFP) is a large transcription factor family in plants that plays crucial roles in stress response and hormone signal transduction. Given its importance, we analyzed the expression patterns of C2H2-ZFP family genes in response to P. sojae infection and selected four candidate genes to explore their molecular characteristics and functions related to P. sojae resistance. Subcellular localization analysis indicated that three ZFPs (GmZFP2, GmZFP3, and GmZFP4) were localized in the nucleus, while GmZFP1 was found in both the nucleus and plasma membrane. Dual-luciferase transient expression analysis revealed that all four ZFPs possessed transcriptional repression activation. Further transient expression in N. benthamiana leaves demonstrated that GmZFP2 induced significant cell death and reactive oxygen species (ROS) accumulation. GmZFP2 significantly enhanced the resistance to Phytophthora pathogens in N. benthamiana leaves and soybean hairy roots. This study provides insights in to the functional characterization of soybean ZFPs in Phytophthora resistance and demonstrates that GmZFP2 plays a positive role in P. sojae resistance in soybeans.