Biomimetic stimulation patterns drive natural artificial touch percepts using intracortical microstimulation in humans.

Taylor G Hobbs, Charles M Greenspon, Ceci Verbaarschot, Giacomo Valle, Christopher Lee Hughes, Michael L Boninger, Sliman J Bensmaia, Robert A Gaunt
{"title":"Biomimetic stimulation patterns drive natural artificial touch percepts using intracortical microstimulation in humans.","authors":"Taylor G Hobbs, Charles M Greenspon, Ceci Verbaarschot, Giacomo Valle, Christopher Lee Hughes, Michael L Boninger, Sliman J Bensmaia, Robert A Gaunt","doi":"10.1088/1741-2552/adc2d4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Intracortical microstimulation (ICMS) of human somatosensory cortex evokes tactile percepts that people describe as originating from their own body, but are not always described as feeling natural. It remains unclear whether stimulation parameters such as amplitude, frequency, and spatiotemporal patterns across electrodes can be chosen to increase the naturalness of these artificial tactile percepts.</p><p><strong>Approach: </strong>In this study, we investigated whether biomimetic stimulation patterns - ICMS patterns that reproduce essential features of natural neural activity - increased the perceived naturalness of ICMS-evoked sensations compared to a non-biomimetic pattern in three people with cervical spinal cord injuries. All participants had electrode arrays implanted in their somatosensory cortices. Rather than qualitatively asking which pattern felt more natural, participants directly compared natural residual percepts, delivered by mechanical indentation on a sensate region of their hand, to artificial percepts evoked by ICMS and were asked whether linear non-biomimetic or biomimetic stimulation felt most like the mechanical indentation.</p><p><strong>Main results: </strong>We show that simple biomimetic ICMS, which modulated the stimulation amplitude on a single electrode, was perceived as being more like a mechanical indentation reference on 32% of the electrodes. We also tested an advanced biomimetic stimulation scheme that captured more of the spatiotemporal dynamics of cortical activity using co-modulated stimulation amplitudes and frequencies across four electrodes. Here, ICMS felt more like the mechanical reference for 75% of the electrode groups. Finally, biomimetic stimulus trains required less charge than their non-biomimetic counterparts to create an intensity-matched sensation.</p><p><strong>Significance: </strong>We conclude that ICMS encoding schemes that mimic naturally occurring neural spatiotemporal activation patterns in the somatosensory cortex feel more like an actual touch than non-biomimetic encoding schemes. This also suggests that using key elements of neuronal activity can be a useful conceptual guide to constrain the large stimulus parameter space when designing future stimulation strategies. This work is a part of Clinical Trial NCT01894802.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adc2d4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Intracortical microstimulation (ICMS) of human somatosensory cortex evokes tactile percepts that people describe as originating from their own body, but are not always described as feeling natural. It remains unclear whether stimulation parameters such as amplitude, frequency, and spatiotemporal patterns across electrodes can be chosen to increase the naturalness of these artificial tactile percepts.

Approach: In this study, we investigated whether biomimetic stimulation patterns - ICMS patterns that reproduce essential features of natural neural activity - increased the perceived naturalness of ICMS-evoked sensations compared to a non-biomimetic pattern in three people with cervical spinal cord injuries. All participants had electrode arrays implanted in their somatosensory cortices. Rather than qualitatively asking which pattern felt more natural, participants directly compared natural residual percepts, delivered by mechanical indentation on a sensate region of their hand, to artificial percepts evoked by ICMS and were asked whether linear non-biomimetic or biomimetic stimulation felt most like the mechanical indentation.

Main results: We show that simple biomimetic ICMS, which modulated the stimulation amplitude on a single electrode, was perceived as being more like a mechanical indentation reference on 32% of the electrodes. We also tested an advanced biomimetic stimulation scheme that captured more of the spatiotemporal dynamics of cortical activity using co-modulated stimulation amplitudes and frequencies across four electrodes. Here, ICMS felt more like the mechanical reference for 75% of the electrode groups. Finally, biomimetic stimulus trains required less charge than their non-biomimetic counterparts to create an intensity-matched sensation.

Significance: We conclude that ICMS encoding schemes that mimic naturally occurring neural spatiotemporal activation patterns in the somatosensory cortex feel more like an actual touch than non-biomimetic encoding schemes. This also suggests that using key elements of neuronal activity can be a useful conceptual guide to constrain the large stimulus parameter space when designing future stimulation strategies. This work is a part of Clinical Trial NCT01894802.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信