Artificial intelligence for the analysis of intracoronary optical coherence tomography images: a systematic review.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-01-28 eCollection Date: 2025-03-01 DOI:10.1093/ehjdh/ztaf005
Ruben G A van der Waerden, Rick H J A Volleberg, Thijs J Luttikholt, Pierandrea Cancian, Joske L van der Zande, Gregg W Stone, Niels R Holm, Elvin Kedhi, Javier Escaned, Dario Pellegrini, Giulio Guagliumi, Shamir R Mehta, Natalia Pinilla-Echeverri, Raúl Moreno, Lorenz Räber, Tomasz Roleder, Bram van Ginneken, Clara I Sánchez, Ivana Išgum, Niels van Royen, Jos Thannhauser
{"title":"Artificial intelligence for the analysis of intracoronary optical coherence tomography images: a systematic review.","authors":"Ruben G A van der Waerden, Rick H J A Volleberg, Thijs J Luttikholt, Pierandrea Cancian, Joske L van der Zande, Gregg W Stone, Niels R Holm, Elvin Kedhi, Javier Escaned, Dario Pellegrini, Giulio Guagliumi, Shamir R Mehta, Natalia Pinilla-Echeverri, Raúl Moreno, Lorenz Räber, Tomasz Roleder, Bram van Ginneken, Clara I Sánchez, Ivana Išgum, Niels van Royen, Jos Thannhauser","doi":"10.1093/ehjdh/ztaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Intracoronary optical coherence tomography (OCT) is a valuable tool for, among others, periprocedural guidance of percutaneous coronary revascularization and the assessment of stent failure. However, manual OCT image interpretation is challenging and time-consuming, which limits widespread clinical adoption. Automated analysis of OCT frames using artificial intelligence (AI) offers a potential solution. For example, AI can be employed for automated OCT image interpretation, plaque quantification, and clinical event prediction. Many AI models for these purposes have been proposed in recent years. However, these models have not been systematically evaluated in terms of model characteristics, performances, and bias. We performed a systematic review of AI models developed for OCT analysis to evaluate the trends and performances, including a systematic evaluation of potential sources of bias in model development and evaluation.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 2","pages":"270-284"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztaf005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Intracoronary optical coherence tomography (OCT) is a valuable tool for, among others, periprocedural guidance of percutaneous coronary revascularization and the assessment of stent failure. However, manual OCT image interpretation is challenging and time-consuming, which limits widespread clinical adoption. Automated analysis of OCT frames using artificial intelligence (AI) offers a potential solution. For example, AI can be employed for automated OCT image interpretation, plaque quantification, and clinical event prediction. Many AI models for these purposes have been proposed in recent years. However, these models have not been systematically evaluated in terms of model characteristics, performances, and bias. We performed a systematic review of AI models developed for OCT analysis to evaluate the trends and performances, including a systematic evaluation of potential sources of bias in model development and evaluation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信