An ensemble learning model for detection of pulmonary hypertension using electrocardiogram, chest X-ray, and brain natriuretic peptide.

IF 4.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2025-01-16 eCollection Date: 2025-03-01 DOI:10.1093/ehjdh/ztae097
Risa Kishikawa, Satoshi Kodera, Naoto Setoguchi, Kengo Tanabe, Shunichi Kushida, Mamoru Nanasato, Hisataka Maki, Hideo Fujita, Nahoko Kato, Hiroyuki Watanabe, Masao Takahashi, Naoko Sawada, Jiro Ando, Masataka Sato, Shinnosuke Sawano, Hiroki Shinohara, Koki Nakanishi, Shun Minatsuki, Junichi Ishida, Katsuhito Fujiu, Hiroshi Akazawa, Hiroyuki Morita, Norihiko Takeda
{"title":"An ensemble learning model for detection of pulmonary hypertension using electrocardiogram, chest X-ray, and brain natriuretic peptide.","authors":"Risa Kishikawa, Satoshi Kodera, Naoto Setoguchi, Kengo Tanabe, Shunichi Kushida, Mamoru Nanasato, Hisataka Maki, Hideo Fujita, Nahoko Kato, Hiroyuki Watanabe, Masao Takahashi, Naoko Sawada, Jiro Ando, Masataka Sato, Shinnosuke Sawano, Hiroki Shinohara, Koki Nakanishi, Shun Minatsuki, Junichi Ishida, Katsuhito Fujiu, Hiroshi Akazawa, Hiroyuki Morita, Norihiko Takeda","doi":"10.1093/ehjdh/ztae097","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Delayed diagnosis of pulmonary hypertension (PH) is a known cause of poor patient prognosis. We aimed to develop an artificial intelligence (AI) model, using ensemble learning method to detect PH using electrocardiography (ECG), chest X-ray (CXR), and brain natriuretic peptide (BNP), facilitating accurate detection and prompting further examinations.</p><p><strong>Methods and results: </strong>We developed a convolutional neural network model using ECG data to predict PH, labelled by ECG from seven institutions. Logistic regression was used for the BNP prediction model. We referenced a CXR deep learning model using ResNet18. Outputs from each of the three models were integrated into a three-layer fully connected multimodal model. Ten cardiologists participated in an interpretation test, detecting PH from patients' ECG, CXR, and BNP data both with and without the ensemble learning model. The area under the receiver operating characteristic curves of the ECG, CXR, BNP, and ensemble learning model were 0.818 [95% confidence interval (CI), 0.808-0.828], 0.823 (95% CI, 0.780-0.866), 0.724 (95% CI, 0.668-0.780), and 0.872 (95% CI, 0.829-0.915). Cardiologists' average accuracy rates were 65.0 ± 4.7% for test without AI model and 74.0 ± 2.7% for test with AI model, a statistically significant improvement (<i>P</i> < 0.01).</p><p><strong>Conclusion: </strong>Our ensemble learning model improved doctors' accuracy in detecting PH from ECG, CXR, and BNP examinations. This suggests that earlier and more accurate PH diagnosis is possible, potentially improving patient prognosis.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 2","pages":"209-217"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Delayed diagnosis of pulmonary hypertension (PH) is a known cause of poor patient prognosis. We aimed to develop an artificial intelligence (AI) model, using ensemble learning method to detect PH using electrocardiography (ECG), chest X-ray (CXR), and brain natriuretic peptide (BNP), facilitating accurate detection and prompting further examinations.

Methods and results: We developed a convolutional neural network model using ECG data to predict PH, labelled by ECG from seven institutions. Logistic regression was used for the BNP prediction model. We referenced a CXR deep learning model using ResNet18. Outputs from each of the three models were integrated into a three-layer fully connected multimodal model. Ten cardiologists participated in an interpretation test, detecting PH from patients' ECG, CXR, and BNP data both with and without the ensemble learning model. The area under the receiver operating characteristic curves of the ECG, CXR, BNP, and ensemble learning model were 0.818 [95% confidence interval (CI), 0.808-0.828], 0.823 (95% CI, 0.780-0.866), 0.724 (95% CI, 0.668-0.780), and 0.872 (95% CI, 0.829-0.915). Cardiologists' average accuracy rates were 65.0 ± 4.7% for test without AI model and 74.0 ± 2.7% for test with AI model, a statistically significant improvement (P < 0.01).

Conclusion: Our ensemble learning model improved doctors' accuracy in detecting PH from ECG, CXR, and BNP examinations. This suggests that earlier and more accurate PH diagnosis is possible, potentially improving patient prognosis.

Abstract Image

Abstract Image

Abstract Image

利用心电图、胸片和脑利钠肽检测肺动脉高压的集成学习模型。
目的:肺动脉高压(PH)的延迟诊断是患者预后不良的已知原因。我们的目标是开发一个人工智能(AI)模型,使用集成学习方法通过心电图(ECG)、胸部x光片(CXR)和脑钠肽(BNP)检测PH值,促进准确检测并提示进一步检查。方法和结果:我们开发了一个卷积神经网络模型,利用ECG数据预测PH值,由七个机构的ECG标记。BNP预测模型采用Logistic回归。我们引用了一个使用ResNet18的CXR深度学习模型。三个模型的输出被集成到一个三层全连接的多模态模型中。10名心脏病专家参与了一项解释测试,从患者的ECG、CXR和BNP数据中检测PH值,无论是否使用集成学习模型。心电图、CXR、BNP和集成学习模型的受试者工作特征曲线下面积分别为0.818[95%可信区间(CI), 0.808 ~ 0.828]、0.823 (95% CI, 0.780 ~ 0.866)、0.724 (95% CI, 0.668 ~ 0.780)和0.872 (95% CI, 0.829 ~ 0.915)。无人工智能模型组的平均准确率为65.0±4.7%,有人工智能模型组的平均准确率为74.0±2.7%,差异有统计学意义(P < 0.01)。结论:我们的集成学习模型提高了医生通过ECG、CXR和BNP检查检测PH值的准确性。这表明早期和更准确的PH诊断是可能的,有可能改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信