Performance of ChatGPT-4 on Taiwanese Traditional Chinese Medicine Licensing Examinations: Cross-Sectional Study.

IF 3.2 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Liang-Wei Tseng, Yi-Chin Lu, Liang-Chi Tseng, Yu-Chun Chen, Hsing-Yu Chen
{"title":"Performance of ChatGPT-4 on Taiwanese Traditional Chinese Medicine Licensing Examinations: Cross-Sectional Study.","authors":"Liang-Wei Tseng, Yi-Chin Lu, Liang-Chi Tseng, Yu-Chun Chen, Hsing-Yu Chen","doi":"10.2196/58897","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The integration of artificial intelligence (AI), notably ChatGPT, into medical education, has shown promising results in various medical fields. Nevertheless, its efficacy in traditional Chinese medicine (TCM) examinations remains understudied.</p><p><strong>Objective: </strong>This study aims to (1) assess the performance of ChatGPT on the TCM licensing examination in Taiwan and (2) evaluate the model's explainability in answering TCM-related questions to determine its suitability as a TCM learning tool.</p><p><strong>Methods: </strong>We used the GPT-4 model to respond to 480 questions from the 2022 TCM licensing examination. This study compared the performance of the model against that of licensed TCM doctors using 2 approaches, namely direct answer selection and provision of explanations before answer selection. The accuracy and consistency of AI-generated responses were analyzed. Moreover, a breakdown of question characteristics was performed based on the cognitive level, depth of knowledge, types of questions, vignette style, and polarity of questions.</p><p><strong>Results: </strong>ChatGPT achieved an overall accuracy of 43.9%, which was lower than that of 2 human participants (70% and 78.4%). The analysis did not reveal a significant correlation between the accuracy of the model and the characteristics of the questions. An in-depth examination indicated that errors predominantly resulted from a misunderstanding of TCM concepts (55.3%), emphasizing the limitations of the model with regard to its TCM knowledge base and reasoning capability.</p><p><strong>Conclusions: </strong>Although ChatGPT shows promise as an educational tool, its current performance on TCM licensing examinations is lacking. This highlights the need for enhancing AI models with specialized TCM training and suggests a cautious approach to utilizing AI for TCM education. Future research should focus on model improvement and the development of tailored educational applications to support TCM learning.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"11 ","pages":"e58897"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/58897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The integration of artificial intelligence (AI), notably ChatGPT, into medical education, has shown promising results in various medical fields. Nevertheless, its efficacy in traditional Chinese medicine (TCM) examinations remains understudied.

Objective: This study aims to (1) assess the performance of ChatGPT on the TCM licensing examination in Taiwan and (2) evaluate the model's explainability in answering TCM-related questions to determine its suitability as a TCM learning tool.

Methods: We used the GPT-4 model to respond to 480 questions from the 2022 TCM licensing examination. This study compared the performance of the model against that of licensed TCM doctors using 2 approaches, namely direct answer selection and provision of explanations before answer selection. The accuracy and consistency of AI-generated responses were analyzed. Moreover, a breakdown of question characteristics was performed based on the cognitive level, depth of knowledge, types of questions, vignette style, and polarity of questions.

Results: ChatGPT achieved an overall accuracy of 43.9%, which was lower than that of 2 human participants (70% and 78.4%). The analysis did not reveal a significant correlation between the accuracy of the model and the characteristics of the questions. An in-depth examination indicated that errors predominantly resulted from a misunderstanding of TCM concepts (55.3%), emphasizing the limitations of the model with regard to its TCM knowledge base and reasoning capability.

Conclusions: Although ChatGPT shows promise as an educational tool, its current performance on TCM licensing examinations is lacking. This highlights the need for enhancing AI models with specialized TCM training and suggests a cautious approach to utilizing AI for TCM education. Future research should focus on model improvement and the development of tailored educational applications to support TCM learning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Medical Education
JMIR Medical Education Social Sciences-Education
CiteScore
6.90
自引率
5.60%
发文量
54
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信