Altered Gut Microbiota Contributes to Acute-Respiratory-Distress-Syndrome-Related Depression through Microglial Neuroinflammation.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-19 eCollection Date: 2025-01-01 DOI:10.34133/research.0636
Bowen Zhu, Zheng Gu, Hongbin Hu, Jie Huang, Zhenhua Zeng, Haoxuan Liang, Ziyi Yuan, Shiwei Huang, Yuetan Qiu, Xiang-Dong Sun, Youtan Liu
{"title":"Altered Gut Microbiota Contributes to Acute-Respiratory-Distress-Syndrome-Related Depression through Microglial Neuroinflammation.","authors":"Bowen Zhu, Zheng Gu, Hongbin Hu, Jie Huang, Zhenhua Zeng, Haoxuan Liang, Ziyi Yuan, Shiwei Huang, Yuetan Qiu, Xiang-Dong Sun, Youtan Liu","doi":"10.34133/research.0636","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) survivors often suffer from long-term psychiatric disorders such as depression, but the underlying mechanisms remain unclear. Here, we found marked alterations in the composition of gut microbiota in both ARDS patients and mouse models. We investigated the role of one of the dramatically changed bacteria-<i>Akkermansia muciniphila</i> (<i>AKK</i>), whose abundance was negatively correlated with depression phenotypes in both ARDS patients and ARDS mouse models. Specifically, while fecal transplantation from ARDS patients into naive mice led to depressive-like behaviors, microglial activation, and intestinal barrier destruction, colonization of <i>AKK</i> or oral administration of its metabolite-propionic acid-alleviated these deficits in ARDS mice. Mechanistically, <i>AKK</i> and propionic acid decreased microglial activation and neuronal inflammation through inhibiting the Toll-like receptor 4/nuclear factor κB signaling pathway. Together, these results reveal a microbiota-dependent mechanism for ARDS-related depression and provide insight for developing a novel preventative strategy for ARDS-related psychiatric symptoms.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0636"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919824/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0636","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Acute respiratory distress syndrome (ARDS) survivors often suffer from long-term psychiatric disorders such as depression, but the underlying mechanisms remain unclear. Here, we found marked alterations in the composition of gut microbiota in both ARDS patients and mouse models. We investigated the role of one of the dramatically changed bacteria-Akkermansia muciniphila (AKK), whose abundance was negatively correlated with depression phenotypes in both ARDS patients and ARDS mouse models. Specifically, while fecal transplantation from ARDS patients into naive mice led to depressive-like behaviors, microglial activation, and intestinal barrier destruction, colonization of AKK or oral administration of its metabolite-propionic acid-alleviated these deficits in ARDS mice. Mechanistically, AKK and propionic acid decreased microglial activation and neuronal inflammation through inhibiting the Toll-like receptor 4/nuclear factor κB signaling pathway. Together, these results reveal a microbiota-dependent mechanism for ARDS-related depression and provide insight for developing a novel preventative strategy for ARDS-related psychiatric symptoms.

肠道菌群改变通过小胶质神经炎症导致急性呼吸窘迫综合征相关抑郁
急性呼吸窘迫综合征(ARDS)的幸存者通常患有长期精神疾病,如抑郁症,但其潜在机制尚不清楚。在这里,我们发现ARDS患者和小鼠模型中肠道微生物群的组成都有明显的变化。我们研究了其中一种显著改变的细菌——嗜muciniphila (akkermansia muciniphila, AKK)的作用,该细菌的丰度与ARDS患者和ARDS小鼠模型的抑郁表型呈负相关。具体来说,虽然将ARDS患者的粪便移植到幼稚小鼠体内会导致抑郁样行为、小胶质细胞激活和肠道屏障破坏,但AKK定植或口服其代谢物丙酸可减轻ARDS小鼠的这些缺陷。机制上,AKK和丙酸通过抑制toll样受体4/核因子κB信号通路降低小胶质细胞活化和神经元炎症。总之,这些结果揭示了ards相关抑郁的微生物依赖机制,并为开发一种新的ards相关精神症状预防策略提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信