Toward an Automated System for Nondestructive Estimation of Plant Biomass.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2025-03-19 eCollection Date: 2025-03-01 DOI:10.1002/pld3.70043
Randall Kliman, Yuankai Huang, Ye Zhao, Yongsheng Chen
{"title":"Toward an Automated System for Nondestructive Estimation of Plant Biomass.","authors":"Randall Kliman, Yuankai Huang, Ye Zhao, Yongsheng Chen","doi":"10.1002/pld3.70043","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and nondestructive estimation of plant biomass is crucial for optimizing plant productivity, but existing methods are often expensive and require complex experimental setups. To address this challenge, we developed an automated system for estimating plant root and shoot biomass over the plant's lifecycle in hydroponic systems. This system employs a robotic arm and turntable to capture 40 images at equidistant angles around a hydroponically grown lettuce plant. These images are then processed into silhouettes and used in voxel-based volumetric 3D reconstruction to produce detailed 3D models. We utilize a space carving method along with a raytracing-based optical correction technique to create high-accuracy reconstructions. Analysis of these models demonstrates that our system accurately reconstructs the plant root structure and provides precise measurements of root volume, which can be calibrated to indicate biomass.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 3","pages":"e70043"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and nondestructive estimation of plant biomass is crucial for optimizing plant productivity, but existing methods are often expensive and require complex experimental setups. To address this challenge, we developed an automated system for estimating plant root and shoot biomass over the plant's lifecycle in hydroponic systems. This system employs a robotic arm and turntable to capture 40 images at equidistant angles around a hydroponically grown lettuce plant. These images are then processed into silhouettes and used in voxel-based volumetric 3D reconstruction to produce detailed 3D models. We utilize a space carving method along with a raytracing-based optical correction technique to create high-accuracy reconstructions. Analysis of these models demonstrates that our system accurately reconstructs the plant root structure and provides precise measurements of root volume, which can be calibrated to indicate biomass.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信