Early life stress modulates neonatal somatosensation and the transcriptional profile of immature sensory neurons.

IF 5.9 1区 医学 Q1 ANESTHESIOLOGY
PAIN® Pub Date : 2025-04-01 Epub Date: 2024-09-27 DOI:10.1097/j.pain.0000000000003416
Kyle Harbour, Fady Eid, Elizabeth Serafin, Madailein Hayes, Mark L Baccei
{"title":"Early life stress modulates neonatal somatosensation and the transcriptional profile of immature sensory neurons.","authors":"Kyle Harbour, Fady Eid, Elizabeth Serafin, Madailein Hayes, Mark L Baccei","doi":"10.1097/j.pain.0000000000003416","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Early life stress (ELS) is associated with an increased risk of experiencing chronic pain during adulthood, but surprisingly little is known about the short-term influence of ELS on nociceptive processing in the immature nervous system and the concomitant effects on somatosensation in the neonate. Here, we investigate how ELS modulates pain in neonatal mice and the transcriptional and electrophysiological signatures of immature dorsal root ganglia (DRG). Shortly after the administration of a neonatal limiting bedding (NLB) paradigm from postnatal days (P)2 to P9, both male and female pups exhibited robust hypersensitivity in response to tactile, pressure, and noxious cold stimuli compared with a control group housed under standard conditions, with no change in their sensitivity to noxious heat. Bulk RNA-seq analysis of L3-L5 DRGs at P9 revealed significant alterations in the transcription of pain- and itch-related genes following ELS, highlighted by a marked downregulation in Sst , Nppb , Chrna6 , Trpa1 , and Il31ra . Nonetheless, ex vivo whole-cell patch-clamp recordings from putative A- and C-fiber sensory neurons in the neonatal DRG found no significant changes in their intrinsic membrane excitability following NLB. Overall, these findings suggest that ELS triggers hyperalgesia in neonates across multiple pain modalities that is accompanied by transcriptional plasticity within developing sensory neurons. A better understanding of the mechanisms governing the interactions between chronic stress and pain during the neonatal period could inform the future development of novel interventional strategies to relieve pain in infants and children who have experienced trauma.</p>","PeriodicalId":19921,"journal":{"name":"PAIN®","volume":"166 4","pages":"888-901"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PAIN®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/j.pain.0000000000003416","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Early life stress (ELS) is associated with an increased risk of experiencing chronic pain during adulthood, but surprisingly little is known about the short-term influence of ELS on nociceptive processing in the immature nervous system and the concomitant effects on somatosensation in the neonate. Here, we investigate how ELS modulates pain in neonatal mice and the transcriptional and electrophysiological signatures of immature dorsal root ganglia (DRG). Shortly after the administration of a neonatal limiting bedding (NLB) paradigm from postnatal days (P)2 to P9, both male and female pups exhibited robust hypersensitivity in response to tactile, pressure, and noxious cold stimuli compared with a control group housed under standard conditions, with no change in their sensitivity to noxious heat. Bulk RNA-seq analysis of L3-L5 DRGs at P9 revealed significant alterations in the transcription of pain- and itch-related genes following ELS, highlighted by a marked downregulation in Sst , Nppb , Chrna6 , Trpa1 , and Il31ra . Nonetheless, ex vivo whole-cell patch-clamp recordings from putative A- and C-fiber sensory neurons in the neonatal DRG found no significant changes in their intrinsic membrane excitability following NLB. Overall, these findings suggest that ELS triggers hyperalgesia in neonates across multiple pain modalities that is accompanied by transcriptional plasticity within developing sensory neurons. A better understanding of the mechanisms governing the interactions between chronic stress and pain during the neonatal period could inform the future development of novel interventional strategies to relieve pain in infants and children who have experienced trauma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PAIN®
PAIN® 医学-临床神经学
CiteScore
12.50
自引率
8.10%
发文量
242
审稿时长
9 months
期刊介绍: PAIN® is the official publication of the International Association for the Study of Pain and publishes original research on the nature,mechanisms and treatment of pain.PAIN® provides a forum for the dissemination of research in the basic and clinical sciences of multidisciplinary interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信