Cold pressor-induced sympathetic activation blunts the femoral but not carotid artery vascular responsiveness.

IF 2.2 Q3 PHYSIOLOGY
Guilherme F Speretta, Gaia Giuriato, Gianluigi Dorelli, Chiara Barbi, Anna Pedrinolla, Massimo Venturelli
{"title":"Cold pressor-induced sympathetic activation blunts the femoral but not carotid artery vascular responsiveness.","authors":"Guilherme F Speretta, Gaia Giuriato, Gianluigi Dorelli, Chiara Barbi, Anna Pedrinolla, Massimo Venturelli","doi":"10.14814/phy2.70281","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular responsiveness due to passive leg movement (PLM) on the brain remains unknown. This study aimed to evaluate the effects of cold-induced sympathetic activation (CPT) on femoral and ipsilateral and contralateral carotid arteries' vascular responsiveness evoked by PLM. Thirteen participants (seven males and six females; age: 27.0 ± 2.3 years) undertook a randomized session in which PLM was performed on the right leg at rest and during CPT. Right femoral (fBF) and right (ipsilateral) and left (contralateral) carotid (cBF) blood flows were measured by ultrasounds, and heart hemodynamics were assessed via photoplethysmography and impedance cardiograph. Systolic arterial pressure (SAP) time series were used to infer sympathetic modulation to the vessels. Femoral (fVC) and carotid (cVC) vascular conductance (BF/MAP) were calculated. CPT evoked changes in PLM on cBF, fBF, and fVC (interaction and time effect). cBF peak and cBF and cVC area under the curve were higher in the contralateral carotid in the two interventions. Low-frequency power of SAP was higher in PLM-CPT than in PLM; all p < 0.05. These results suggest that the CPT-induced increases in sympathetic modulation attenuate the vascular responsiveness in the femoral, but not the carotid, arteries. Also, the contralateral carotid increased blood flow during PLM, regardless of the CPT.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 6","pages":"e70281"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular responsiveness due to passive leg movement (PLM) on the brain remains unknown. This study aimed to evaluate the effects of cold-induced sympathetic activation (CPT) on femoral and ipsilateral and contralateral carotid arteries' vascular responsiveness evoked by PLM. Thirteen participants (seven males and six females; age: 27.0 ± 2.3 years) undertook a randomized session in which PLM was performed on the right leg at rest and during CPT. Right femoral (fBF) and right (ipsilateral) and left (contralateral) carotid (cBF) blood flows were measured by ultrasounds, and heart hemodynamics were assessed via photoplethysmography and impedance cardiograph. Systolic arterial pressure (SAP) time series were used to infer sympathetic modulation to the vessels. Femoral (fVC) and carotid (cVC) vascular conductance (BF/MAP) were calculated. CPT evoked changes in PLM on cBF, fBF, and fVC (interaction and time effect). cBF peak and cBF and cVC area under the curve were higher in the contralateral carotid in the two interventions. Low-frequency power of SAP was higher in PLM-CPT than in PLM; all p < 0.05. These results suggest that the CPT-induced increases in sympathetic modulation attenuate the vascular responsiveness in the femoral, but not the carotid, arteries. Also, the contralateral carotid increased blood flow during PLM, regardless of the CPT.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信