International Union of Basic and Clinical Pharmacology. CXIX. Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes.

IF 17.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Pharmacological Reviews Pub Date : 2025-05-01 Epub Date: 2025-02-25 DOI:10.1016/j.pharmr.2025.100051
Rosalía Rodríguez-Rodríguez, Miguel Baena, Sebastián Zagmutt, West Kristian Paraiso, Ana Cristina Reguera, Rut Fadó, Núria Casals
{"title":"International Union of Basic and Clinical Pharmacology. CXIX. Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes.","authors":"Rosalía Rodríguez-Rodríguez, Miguel Baena, Sebastián Zagmutt, West Kristian Paraiso, Ana Cristina Reguera, Rut Fadó, Núria Casals","doi":"10.1016/j.pharmr.2025.100051","DOIUrl":null,"url":null,"abstract":"<p><p>The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 3","pages":"100051"},"PeriodicalIF":17.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pharmr.2025.100051","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.

国际基础和临床药理学联盟:关于肉碱棕榈酰转移酶家族的基本见解和临床相关性。
肉碱棕榈酰基转移酶(CPTs)在控制长链脂肪酸氧化中起关键作用,是肥胖、糖尿病和癌症等代谢成分较强的疾病的潜在治疗靶点。四种不同的蛋白是CPT1A, CPT1B, CPT1C和CPT2,它们在组织表达和催化活性上不同。cpt15受到丙二酰辅酶a的精细调节,丙二酰辅酶a是一种代谢产物,其细胞内水平反映细胞的营养状态。虽然CPT1C没有表现出显著的催化活性,但它能够调节其他神经元蛋白的功能。在结构上,所有的cpt都有一个y形的催化通道,允许2个底物进入,并在疏水口袋中容纳酰基。一些靶向这些酶的分子已经被描述,其中一些显示出在糖尿病患者血糖水平正常化方面的潜力,而另一些则通过一种中心机制,是厌氧性的,并增加能量消耗。然而,考虑到cpt在某些组织(如心脏、肝脏和大脑)中发挥的关键作用,充分了解各种同种异构体之间的差异至关重要。我们详细分析了这些蛋白质的结构,它们的细胞和生理功能,以及它们作为肥胖症、糖尿病和癌症等疾病的治疗靶点的潜力。我们还描述了迄今为止确定的对这些蛋白质具有抑制或激活能力的药物。这些知识将支持针对每种异构体的新药设计,以及可以选择性靶向特定组织或细胞的纳米药物的开发。意义声明:肉碱棕榈酰基转移酶(CPT)蛋白作为脂肪酸氧化的守门人,在治疗代谢性疾病如肥胖、糖尿病和癌症方面具有巨大的潜力。近年来,对cpt三维结构及其病理生理功能的研究取得了重大进展。更深入地了解各种CPT家族成员之间的差异将有助于设计具有更少副作用的选择性药物和治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacological Reviews
Pharmacological Reviews 医学-药学
CiteScore
34.70
自引率
0.50%
发文量
40
期刊介绍: Pharmacological Reviews is a highly popular and well-received journal that has a long and rich history of success. It was first published in 1949 and is currently published bimonthly online by the American Society for Pharmacology and Experimental Therapeutics. The journal is indexed or abstracted by various databases, including Biological Abstracts, BIOSIS Previews Database, Biosciences Information Service, Current Contents/Life Sciences, EMBASE/Excerpta Medica, Index Medicus, Index to Scientific Reviews, Medical Documentation Service, Reference Update, Research Alerts, Science Citation Index, and SciSearch. Pharmacological Reviews offers comprehensive reviews of new pharmacological fields and is able to stay up-to-date with published content. Overall, it is highly regarded by scholars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信