Mahsa Alikord, Nabi Shariatifar, Mammad Saraji, Hedayat Hosseini, Gholamreza Jahed Khaniki, Shahram Shoeibi, Toba Rezazadeh, Mohammad Fazeli
{"title":"Bio-nanoparticles sensor couple with smartphone digital image colorimetry and dispersive liquid-liquid microextraction for aflatoxin B1 detection.","authors":"Mahsa Alikord, Nabi Shariatifar, Mammad Saraji, Hedayat Hosseini, Gholamreza Jahed Khaniki, Shahram Shoeibi, Toba Rezazadeh, Mohammad Fazeli","doi":"10.1038/s41598-025-92944-3","DOIUrl":null,"url":null,"abstract":"<p><p>A novel nanobiosensor-based colorimetric method was developed by integrating ZnO nanoparticles functionalized with curcumin, dispersive liquid-liquid microextraction (DLLME), and smartphone digital image colorimetry for the sensitive detection of aflatoxin B1 (AFB1) in baby food samples. The unique combination of biologically-derived ZnO nanoparticles with curcumin created a sensing platform, while DLLME provided efficient pre-concentration of the target analyte. A custom-designed portable colorimetric box enabled standardized image capture and analysis using a smartphone camera and colorimetric software. Under optimized conditions using chloroform as the extraction solvent and acetonitrile as the disperser solvent, the method achieved a remarkable limit of detection of 0.09 μg/kg within linear concentration range of 0-1 μg/L. The calibration curves demonstrated excellent linearity (R<sup>2</sup> > 0.9906) with high precision (RSD < 5.52%). The method was successfully validated using baby food samples, achieving high recoveries (89.8-94.2%). This innovative integration of nanobiosensing, microextraction, and smartphone technology offers a rapid, highly sensitive, and cost-effective platform for on-site AFB1 detection in food safety applications, particularly beneficial for resource-limited settings.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9485"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92944-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A novel nanobiosensor-based colorimetric method was developed by integrating ZnO nanoparticles functionalized with curcumin, dispersive liquid-liquid microextraction (DLLME), and smartphone digital image colorimetry for the sensitive detection of aflatoxin B1 (AFB1) in baby food samples. The unique combination of biologically-derived ZnO nanoparticles with curcumin created a sensing platform, while DLLME provided efficient pre-concentration of the target analyte. A custom-designed portable colorimetric box enabled standardized image capture and analysis using a smartphone camera and colorimetric software. Under optimized conditions using chloroform as the extraction solvent and acetonitrile as the disperser solvent, the method achieved a remarkable limit of detection of 0.09 μg/kg within linear concentration range of 0-1 μg/L. The calibration curves demonstrated excellent linearity (R2 > 0.9906) with high precision (RSD < 5.52%). The method was successfully validated using baby food samples, achieving high recoveries (89.8-94.2%). This innovative integration of nanobiosensing, microextraction, and smartphone technology offers a rapid, highly sensitive, and cost-effective platform for on-site AFB1 detection in food safety applications, particularly beneficial for resource-limited settings.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.