Mechanism allowing biochar to aid in arbuscular mycorrhizal colonization in Panax quinquefolius L. roots and improve secondary metabolite production.

IF 3.8 2区 生物学 Q2 MYCOLOGY
Xiaoli Chen, Zhifang Ran, Yue Wang, Tian Chen, Lanping Guo, Lei Fang, Jie Zhou
{"title":"Mechanism allowing biochar to aid in arbuscular mycorrhizal colonization in Panax quinquefolius L. roots and improve secondary metabolite production.","authors":"Xiaoli Chen, Zhifang Ran, Yue Wang, Tian Chen, Lanping Guo, Lei Fang, Jie Zhou","doi":"10.1007/s00572-025-01195-7","DOIUrl":null,"url":null,"abstract":"<p><p>Panax quinquefolius L, a medicinal plant of the family Araliaceae, has been used in China for more than 300 years. The quality of its medicinal materials is a significant concern. Our previous studies have shown that arbuscular mycorrhizal fungi (AMF) promote the growth of P. quinquefolius and facilitate the accumulation of the active ingredient ginsenosides. However, these beneficial effects are limited by the low AMF colonization rate in production settings, requiring interventions to improve the colonization rate. Biochar is considered an effective soil amendment. Our preliminary experiments indicate that biochar can enhance the inter-root microecology of P. quinquefolius, as well as increase the AMF colonization rate, but the mechanism was not clear. Therefore, we propose using biochar to increase the AMF colonization rate. In this study, we explore the use of biochar to promote the AMF infestation rate of P. quinquefolius and its potential mechanisms. The mechanism was explored by setting up eight treatments. The colonization rate and intensity of AMF in P. quinquefolius roots were assessed using a Trypan Blue solution. Rhizosphere soil microorganisms were analyzed by 16S and ITS sequencing, and secondary metabolites were identified via non-targeted metabolomics. The results showed that the AMF and 2% biochar combined (AMF + BC2) treatment significantly increased both the colonization rate and colonization intensity of AMF, which were 53.58% and 195.95% higher than that of AMF, respectively. The colonization and rhizosphere AMF data indicate that the application of biochar promotes AMF colonization from outside to inside the root. In addition, biochar attracted potentially beneficial microorganisms such as Sphingobium, Sphingomonas, and Novosphingobium, which are positively correlated with AMF and promote AMF colonization. These microorganisms are closely linked with active secondary metabolites, such as Sphingobium, which is positively correlated with L-malic acid. In conclusion, biochar can improve the quality of P. quinquefolius by promoting the formation of mycorrhizae. This finding provides a theoretical basis for the observed effect of the co-application of biochar and AMF on the growth and active ingredient accumulation of P. quinquefolius.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"23"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01195-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Panax quinquefolius L, a medicinal plant of the family Araliaceae, has been used in China for more than 300 years. The quality of its medicinal materials is a significant concern. Our previous studies have shown that arbuscular mycorrhizal fungi (AMF) promote the growth of P. quinquefolius and facilitate the accumulation of the active ingredient ginsenosides. However, these beneficial effects are limited by the low AMF colonization rate in production settings, requiring interventions to improve the colonization rate. Biochar is considered an effective soil amendment. Our preliminary experiments indicate that biochar can enhance the inter-root microecology of P. quinquefolius, as well as increase the AMF colonization rate, but the mechanism was not clear. Therefore, we propose using biochar to increase the AMF colonization rate. In this study, we explore the use of biochar to promote the AMF infestation rate of P. quinquefolius and its potential mechanisms. The mechanism was explored by setting up eight treatments. The colonization rate and intensity of AMF in P. quinquefolius roots were assessed using a Trypan Blue solution. Rhizosphere soil microorganisms were analyzed by 16S and ITS sequencing, and secondary metabolites were identified via non-targeted metabolomics. The results showed that the AMF and 2% biochar combined (AMF + BC2) treatment significantly increased both the colonization rate and colonization intensity of AMF, which were 53.58% and 195.95% higher than that of AMF, respectively. The colonization and rhizosphere AMF data indicate that the application of biochar promotes AMF colonization from outside to inside the root. In addition, biochar attracted potentially beneficial microorganisms such as Sphingobium, Sphingomonas, and Novosphingobium, which are positively correlated with AMF and promote AMF colonization. These microorganisms are closely linked with active secondary metabolites, such as Sphingobium, which is positively correlated with L-malic acid. In conclusion, biochar can improve the quality of P. quinquefolius by promoting the formation of mycorrhizae. This finding provides a theoretical basis for the observed effect of the co-application of biochar and AMF on the growth and active ingredient accumulation of P. quinquefolius.

生物炭促进西洋参根丛枝菌根定植和提高次生代谢物产量的机制。
西洋参是五加科药用植物,在中国已有300多年的历史。其药材的质量是一个重大问题。我们的前期研究表明,丛枝菌根真菌(AMF)能促进西洋参的生长,促进其有效成分人参皂苷的积累。然而,这些有益效果受到生产环境中AMF定殖率低的限制,需要干预措施来提高定殖率。生物炭被认为是有效的土壤改良剂。初步实验结果表明,生物炭能增强西杨树根间微生态,提高AMF定殖率,但作用机制尚不清楚。因此,我们建议使用生物炭来提高AMF的定殖率。在本研究中,我们探讨了利用生物炭提高西洋参AMF侵染率及其可能的机制。通过设置8种治疗方法,探讨其作用机制。采用台盼蓝溶液测定AMF在西洋参根中的定殖率和定殖强度。通过16S和ITS测序分析根际土壤微生物,通过非靶向代谢组学鉴定次生代谢物。结果表明,AMF与2%生物炭(AMF + BC2)复合处理显著提高了AMF的定殖率和定殖强度,分别比AMF高53.58%和195.95%;定植和根际AMF数据表明,生物炭的施用促进了AMF从根外向根内定植。此外,生物炭吸引了潜在的有益微生物,如Sphingobium、Sphingomonas和Novosphingobium,这些微生物与AMF呈正相关,促进AMF定植。这些微生物与活性次生代谢物密切相关,如Sphingobium,与l -苹果酸正相关。综上所述,生物炭可以通过促进菌根的形成来改善西洋参的品质。这一发现为观察生物炭与AMF共施对西洋参生长和有效成分积累的影响提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信