Effects of DLP printing orientation and postprocessing regimes on the properties of 3D printed denture bases.

IF 4.3 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Dana Jafarpour, Nesma El-Amier, Kawkab Tahboub, Elizabeth Zimmermann, Ana Carolina Pero, Raphael de Souza
{"title":"Effects of DLP printing orientation and postprocessing regimes on the properties of 3D printed denture bases.","authors":"Dana Jafarpour, Nesma El-Amier, Kawkab Tahboub, Elizabeth Zimmermann, Ana Carolina Pero, Raphael de Souza","doi":"10.1016/j.prosdent.2025.02.035","DOIUrl":null,"url":null,"abstract":"<p><strong>Statement of problem: </strong>The variety of recommended postprocessing techniques and printing parameters makes it challenging to determine the best approach to 3-dimensionally (3D) printed dentures.</p><p><strong>Purpose: </strong>The purpose of this in vitro study was to assess the effect of printing orientations (0, 45, and 90 degrees) and postprocessing treatments (ultraviolet [UV], heat, or combination) on the mechanical and surface properties of 3D printed denture base resin.</p><p><strong>Material and methods: </strong>Three-dimensionally printed denture base resin specimens were fabricated at 0-, 45-, and 90-degree printing orientations, followed by 4 postprocessing techniques (UV, Heat, UV+Heat, and control). Microhardness was assessed using a Vickers microhardness tester. Additionally, the flexural strength (FS) and modulus of elasticity (MoE) were analyzed using a 3-point bend test. Wettability was measured according to the sessile drop test. The fractured surfaces were observed under scanning electron microscopy (SEM).</p><p><strong>Results: </strong>FS was significantly greater (P<.001) at a print orientation of 90 degrees (73.7 MPa) compared with 0 and 45 degrees (55.2 and 61.8 MPa). No significant difference in FS was found among postprocessing treatments (all complied with the International Organization for Standardization [ISO] requirements). The UV group had the highest MoE (up to 2061 MPa), followed by the heat-treated groups (up to 1412 MPa). The 45-degree print orientation showed the highest contact angle (CA) in almost all groups (CA=117.6±11.7), and UV led to higher hydrophilicity (CA=33.9±12.0). The effect of build orientation on the microhardness depended on the postprocessing technique with the highest value (23.4 ±1.3) achieved by UV postprocessing in combination with the 90-degree orientation.</p><p><strong>Conclusions: </strong>The optimal FS of 3D printed denture base resin is achieved when it is printed in a vertical orientation (90 degrees relative to the platform base). Thermal annealing as a postprocessing technique combined with UV can effectively enhance FS, induce favorable wettability, and reduce stiffness.</p>","PeriodicalId":16866,"journal":{"name":"Journal of Prosthetic Dentistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthetic Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.prosdent.2025.02.035","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Statement of problem: The variety of recommended postprocessing techniques and printing parameters makes it challenging to determine the best approach to 3-dimensionally (3D) printed dentures.

Purpose: The purpose of this in vitro study was to assess the effect of printing orientations (0, 45, and 90 degrees) and postprocessing treatments (ultraviolet [UV], heat, or combination) on the mechanical and surface properties of 3D printed denture base resin.

Material and methods: Three-dimensionally printed denture base resin specimens were fabricated at 0-, 45-, and 90-degree printing orientations, followed by 4 postprocessing techniques (UV, Heat, UV+Heat, and control). Microhardness was assessed using a Vickers microhardness tester. Additionally, the flexural strength (FS) and modulus of elasticity (MoE) were analyzed using a 3-point bend test. Wettability was measured according to the sessile drop test. The fractured surfaces were observed under scanning electron microscopy (SEM).

Results: FS was significantly greater (P<.001) at a print orientation of 90 degrees (73.7 MPa) compared with 0 and 45 degrees (55.2 and 61.8 MPa). No significant difference in FS was found among postprocessing treatments (all complied with the International Organization for Standardization [ISO] requirements). The UV group had the highest MoE (up to 2061 MPa), followed by the heat-treated groups (up to 1412 MPa). The 45-degree print orientation showed the highest contact angle (CA) in almost all groups (CA=117.6±11.7), and UV led to higher hydrophilicity (CA=33.9±12.0). The effect of build orientation on the microhardness depended on the postprocessing technique with the highest value (23.4 ±1.3) achieved by UV postprocessing in combination with the 90-degree orientation.

Conclusions: The optimal FS of 3D printed denture base resin is achieved when it is printed in a vertical orientation (90 degrees relative to the platform base). Thermal annealing as a postprocessing technique combined with UV can effectively enhance FS, induce favorable wettability, and reduce stiffness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Prosthetic Dentistry
Journal of Prosthetic Dentistry 医学-牙科与口腔外科
CiteScore
7.00
自引率
13.00%
发文量
599
审稿时长
69 days
期刊介绍: The Journal of Prosthetic Dentistry is the leading professional journal devoted exclusively to prosthetic and restorative dentistry. The Journal is the official publication for 24 leading U.S. international prosthodontic organizations. The monthly publication features timely, original peer-reviewed articles on the newest techniques, dental materials, and research findings. The Journal serves prosthodontists and dentists in advanced practice, and features color photos that illustrate many step-by-step procedures. The Journal of Prosthetic Dentistry is included in Index Medicus and CINAHL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信