Bacterial biosynthesis of abietane-type diterpene ferruginol from glucose.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hyun Jeong Lee, Chaeyeon Kim, Yu Been Heo, Seong-Eun Kim, Han Min Woo
{"title":"Bacterial biosynthesis of abietane-type diterpene ferruginol from glucose.","authors":"Hyun Jeong Lee, Chaeyeon Kim, Yu Been Heo, Seong-Eun Kim, Han Min Woo","doi":"10.1186/s12934-025-02691-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial supply of plant extracts is a promising biomanufacturing strategy that requires engineering of metabolic pathways and enzymes. This study presents the engineering of Corynebacterium glutamicum for heterologous production of diterpenes miltiradiene and ferruginol.</p><p><strong>Results: </strong>Through targeted metabolic pathway modifications, including inactivation of pyruvate carboxylase and phytoene synthase, the HL01 strain was optimized to enhance pyruvate and geranylgeranyl pyrophosphate (GGPP) pools. Overexpression of key MEP pathway enzymes (Dxs and Idi) and implementation of three GGPP synthase modules further boosted diterpene synthesis. Then, combining those modules with diterpene synthase (DiTPS) and intact P450 reductase modules (CYP76AH1 and CPR1) enabled production of miltiradiene (ferruginol equivalent) at 237.46 ± 34.8 mg/L and ferruginol at 107.34 ± 1.2 mg/L under constant glucose feeding, respectively.</p><p><strong>Conclusions: </strong>Modular gene expression for heterologous metabolic pathway can be optimized for bacterial biosynthesis. This is the first demonstration of ferruginol production in bacteria. These findings pave the way for further optimization of diterpene biosynthesis through pathway engineering and module integration in bacterial systems.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"67"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02691-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Microbial supply of plant extracts is a promising biomanufacturing strategy that requires engineering of metabolic pathways and enzymes. This study presents the engineering of Corynebacterium glutamicum for heterologous production of diterpenes miltiradiene and ferruginol.

Results: Through targeted metabolic pathway modifications, including inactivation of pyruvate carboxylase and phytoene synthase, the HL01 strain was optimized to enhance pyruvate and geranylgeranyl pyrophosphate (GGPP) pools. Overexpression of key MEP pathway enzymes (Dxs and Idi) and implementation of three GGPP synthase modules further boosted diterpene synthesis. Then, combining those modules with diterpene synthase (DiTPS) and intact P450 reductase modules (CYP76AH1 and CPR1) enabled production of miltiradiene (ferruginol equivalent) at 237.46 ± 34.8 mg/L and ferruginol at 107.34 ± 1.2 mg/L under constant glucose feeding, respectively.

Conclusions: Modular gene expression for heterologous metabolic pathway can be optimized for bacterial biosynthesis. This is the first demonstration of ferruginol production in bacteria. These findings pave the way for further optimization of diterpene biosynthesis through pathway engineering and module integration in bacterial systems.

从葡萄糖中细菌生物合成二乙烷型二萜铁二醇。
背景:植物提取物的微生物供应是一种很有前途的生物制造策略,需要代谢途径和酶的工程。介绍了谷氨酸棒状杆菌异源生产二萜米地拉二烯和铁二醇的工程技术。结果:通过有针对性的代谢途径修饰,包括丙酮酸羧化酶和植物烯合成酶的失活,优化了HL01菌株,以增强丙酮酸和香叶酰焦磷酸(GGPP)池。过表达关键的MEP通路酶(Dxs和Idi)和三个GGPP合成酶模块的实施进一步促进了二萜的合成。然后,将这些模块与二萜合成酶(DiTPS)和完整的P450还原酶模块(CYP76AH1和CPR1)结合,在恒定葡萄糖的条件下,分别以237.46±34.8 mg/L和107.34±1.2 mg/L的速度生产米替拉地尼(铁二醇当量)。结论:异种代谢途径的模块化基因表达可用于细菌生物合成。这是第一次证明在细菌中生产铁二醇。这些发现为通过途径工程和模块集成在细菌系统中进一步优化二萜生物合成铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信