Host specificity of gut microbiota associated with social bees: patterns and processes.

IF 8 1区 生物学 Q1 MICROBIOLOGY
Florent Mazel, Aiswarya Prasad, Philipp Engel
{"title":"Host specificity of gut microbiota associated with social bees: patterns and processes.","authors":"Florent Mazel, Aiswarya Prasad, Philipp Engel","doi":"10.1128/mmbr.00080-23","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYGut microbes provide benefits to some animals, but their distribution and effects across diverse hosts are still poorly described. There is accumulating evidence for host specificity (i.e., a pattern where different microbes tend to associate with distinct host lineages), but the causes and consequences of this pattern are unclear. Combining experimental tests in the laboratory with broad surveys in the wild is a promising approach to gaining a comprehensive and mechanistic understanding of host specificity prevalence, origin, and importance. Social bees represent an ideal testbed for this endeavor because they are phylogenetically and functionally diverse, with host-specific, stable, and tractable gut microbiota. Furthermore, the western honeybee (<i>Apis mellifera</i>) is an emerging experimental model system for studying microbiota-host interactions. In this review, we summarize data on the prevalence and strength of host specificity of the social bee gut microbiota (bumblebees, stingless bees, and honeybees), as well as the potential and proven ecological and molecular mechanisms that maintain host specificity. Overall, we found that host specificity in bees is relatively strong and likely results from several processes, including host filtering mediated by the immune system and priority effects. However, more research is needed across multiple social bee species to confirm these findings. To help future research, we summarize emerging hypotheses in the field and propose several experimental and comparative tests. Finally, we conclude this review by highlighting the need to understand how host specificity can influence host health.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0008023"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00080-23","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SUMMARYGut microbes provide benefits to some animals, but their distribution and effects across diverse hosts are still poorly described. There is accumulating evidence for host specificity (i.e., a pattern where different microbes tend to associate with distinct host lineages), but the causes and consequences of this pattern are unclear. Combining experimental tests in the laboratory with broad surveys in the wild is a promising approach to gaining a comprehensive and mechanistic understanding of host specificity prevalence, origin, and importance. Social bees represent an ideal testbed for this endeavor because they are phylogenetically and functionally diverse, with host-specific, stable, and tractable gut microbiota. Furthermore, the western honeybee (Apis mellifera) is an emerging experimental model system for studying microbiota-host interactions. In this review, we summarize data on the prevalence and strength of host specificity of the social bee gut microbiota (bumblebees, stingless bees, and honeybees), as well as the potential and proven ecological and molecular mechanisms that maintain host specificity. Overall, we found that host specificity in bees is relatively strong and likely results from several processes, including host filtering mediated by the immune system and priority effects. However, more research is needed across multiple social bee species to confirm these findings. To help future research, we summarize emerging hypotheses in the field and propose several experimental and comparative tests. Finally, we conclude this review by highlighting the need to understand how host specificity can influence host health.

与群居蜜蜂相关的肠道微生物群宿主特异性:模式和过程。
肠道微生物对一些动物有益,但它们在不同宿主中的分布和作用仍然缺乏描述。越来越多的证据表明宿主特异性(即不同的微生物倾向于与不同的宿主谱系相关联的模式),但这种模式的原因和后果尚不清楚。将实验室的实验测试与野外的广泛调查相结合,是一种很有希望的方法,可以全面和机械地了解宿主特异性、患病率、起源和重要性。群居蜜蜂代表了这一努力的理想实验平台,因为它们在系统发育和功能上是多样化的,具有宿主特异性、稳定和可处理的肠道微生物群。此外,西方蜜蜂(Apis mellifera)是研究微生物-宿主相互作用的新兴实验模型系统。在这篇综述中,我们总结了关于群居蜜蜂肠道微生物群(大黄蜂、无刺蜜蜂和蜜蜂)宿主特异性的患病率和强度的数据,以及维持宿主特异性的潜在和已证实的生态和分子机制。总体而言,我们发现蜜蜂的宿主特异性相对较强,可能是几个过程的结果,包括免疫系统介导的宿主过滤和优先效应。然而,需要对多个群居蜜蜂物种进行更多的研究来证实这些发现。为了帮助未来的研究,我们总结了该领域的新兴假设,并提出了几个实验和比较测试。最后,我们通过强调了解宿主特异性如何影响宿主健康的必要性来总结这篇综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信