Digital light processing 3D printing of flexible devices: actuators, sensors and energy devices.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Jiuhong Yi, Shuqi Yang, Liang Yue, Iek Man Lei
{"title":"Digital light processing 3D printing of flexible devices: actuators, sensors and energy devices.","authors":"Jiuhong Yi, Shuqi Yang, Liang Yue, Iek Man Lei","doi":"10.1038/s41378-025-00885-8","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible devices are increasingly crucial in various aspects of our lives, including healthcare devices and human-machine interface systems, revolutionizing human life. As technology evolves rapidly, there is a high demand for innovative manufacturing methods that enable rapid prototyping of custom and multifunctional flexible devices with high quality. Recently, digital light processing (DLP) 3D printing has emerged as a promising manufacturing approach due to its capabilities of creating intricate customized structures, high fabrication speed, low-cost technology and widespread adoption. This review provides a state-of-the-art overview of the recent advances in the creation of flexible devices using DLP printing, with a focus on soft actuators, flexible sensors and flexible energy devices. We emphasize how DLP printing and the development of DLP printable materials enhance the structural design, sensitivity, mechanical performance, and overall functionality of these devices. Finally, we discuss the challenges and perspectives associated with DLP-printed flexible devices. We anticipate that the continued advancements in DLP printing will foster the development of smarter flexible devices, shortening the design-to-manufacturing cycles.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"51"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00885-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible devices are increasingly crucial in various aspects of our lives, including healthcare devices and human-machine interface systems, revolutionizing human life. As technology evolves rapidly, there is a high demand for innovative manufacturing methods that enable rapid prototyping of custom and multifunctional flexible devices with high quality. Recently, digital light processing (DLP) 3D printing has emerged as a promising manufacturing approach due to its capabilities of creating intricate customized structures, high fabrication speed, low-cost technology and widespread adoption. This review provides a state-of-the-art overview of the recent advances in the creation of flexible devices using DLP printing, with a focus on soft actuators, flexible sensors and flexible energy devices. We emphasize how DLP printing and the development of DLP printable materials enhance the structural design, sensitivity, mechanical performance, and overall functionality of these devices. Finally, we discuss the challenges and perspectives associated with DLP-printed flexible devices. We anticipate that the continued advancements in DLP printing will foster the development of smarter flexible devices, shortening the design-to-manufacturing cycles.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信