Adaptive-precision potentials for large-scale atomistic simulations.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
David Immel, Ralf Drautz, Godehard Sutmann
{"title":"Adaptive-precision potentials for large-scale atomistic simulations.","authors":"David Immel, Ralf Drautz, Godehard Sutmann","doi":"10.1063/5.0245877","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale atomistic simulations rely on interatomic potentials, providing an efficient representation of atomic energies and forces. Modern machine-learning (ML) potentials provide the most precise representation compared to electronic structure calculations, while traditional potentials provide a less precise but computationally much faster representation and, thus, allow simulations of larger systems. We present a method to combine a traditional and a ML potential into a multi-resolution description, leading to an adaptive-precision potential with an optimum of performance and precision in large, complex atomistic systems. The required precision is determined per atom by a local structure analysis and updated automatically during simulation. We use copper as demonstrator material with an embedded atom model as classical force field and an atomic cluster expansion (ACE) as ML potential, but, in principle, a broader class of potential combinations can be coupled by this method. The approach is developed for the molecular-dynamics simulator LAMMPS and includes a load-balancer to prevent problems due to the atom dependent force-calculation times, which makes it suitable for large-scale atomistic simulations. The developed adaptive-precision copper potential represents the ACE-forces with a precision of 10 me V/Å and the ACE-energy exactly for the precisely calculated atoms in a nanoindentation of 4 × 106 atoms calculated for 100 ps and shows a speedup of 11.3 compared with a full ACE simulation.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0245877","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale atomistic simulations rely on interatomic potentials, providing an efficient representation of atomic energies and forces. Modern machine-learning (ML) potentials provide the most precise representation compared to electronic structure calculations, while traditional potentials provide a less precise but computationally much faster representation and, thus, allow simulations of larger systems. We present a method to combine a traditional and a ML potential into a multi-resolution description, leading to an adaptive-precision potential with an optimum of performance and precision in large, complex atomistic systems. The required precision is determined per atom by a local structure analysis and updated automatically during simulation. We use copper as demonstrator material with an embedded atom model as classical force field and an atomic cluster expansion (ACE) as ML potential, but, in principle, a broader class of potential combinations can be coupled by this method. The approach is developed for the molecular-dynamics simulator LAMMPS and includes a load-balancer to prevent problems due to the atom dependent force-calculation times, which makes it suitable for large-scale atomistic simulations. The developed adaptive-precision copper potential represents the ACE-forces with a precision of 10 me V/Å and the ACE-energy exactly for the precisely calculated atoms in a nanoindentation of 4 × 106 atoms calculated for 100 ps and shows a speedup of 11.3 compared with a full ACE simulation.

大规模原子模拟的自适应精度势。
大规模的原子模拟依赖于原子间势,提供了原子能量和力的有效表示。与电子结构计算相比,现代机器学习(ML)电位提供了最精确的表示,而传统电位提供的表示不太精确,但计算速度快得多,因此可以模拟更大的系统。我们提出了一种方法,将传统和ML势结合到多分辨率描述中,从而在大型复杂原子系统中获得具有最佳性能和精度的自适应精度势。所需的精度由局部结构分析确定,并在模拟过程中自动更新。我们使用铜作为演示材料,嵌入原子模型作为经典力场,原子团簇扩展(ACE)作为ML势,但原则上,通过这种方法可以耦合更广泛的势组合。该方法是为分子动力学模拟器LAMMPS开发的,包括一个负载平衡器,以防止由于原子依赖的力计算时间而导致的问题,这使得它适合大规模的原子模拟。所开发的自适应精密铜电位代表了ACE力的精度为10 mev /Å,并且精确计算了4 × 106个原子的纳米压痕中精确计算原子的ACE能量,计算速度为100 ps,与完整ACE模拟相比,速度提高了11.3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信