Cytoplasmic retention of dengue virus capsid protein by metformin impairing nuclear transport.

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ian Carlos Puello-Nakayama, Jonathan Hernandez-Castillo, Juan Manuel Castillo, Daniel Talamás-Lara, Selvin Noé Palacios-Rápalo, Rosa María Del Ángel
{"title":"Cytoplasmic retention of dengue virus capsid protein by metformin impairing nuclear transport.","authors":"Ian Carlos Puello-Nakayama, Jonathan Hernandez-Castillo, Juan Manuel Castillo, Daniel Talamás-Lara, Selvin Noé Palacios-Rápalo, Rosa María Del Ángel","doi":"10.1099/jgv.0.002089","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear transport of proteins larger than 60 kDa occurs via energy-dependent active transport, whereas smaller proteins diffuse into the nucleus through nuclear pore complexes via passive nuclear transport. Although the dengue virus (DENV) replication cycle primarily takes place in the cytoplasm, the capsid protein and non-structural protein 5 (NS5) are imported into the nucleus through a nuclear localization sequence-dependent mechanism. However, given its small molecular weight (14 kDa), the DENV capsid protein may also enter the nucleus via passive diffusion. While some drugs primarily inhibit active nuclear transport, few are known to block passive diffusion. Notably, biguanides have been associated with inhibitory effects on passive nuclear transport. Since biguanides such as metformin (MET) exhibit anti-DENV properties, we investigated the effects of MET on the nuclear transport of DENV proteins. Our results suggest that MET induces changes in the nuclear membrane of Huh-7 cells and reduces capsid nuclear localization without affecting NS5 nuclear import. Furthermore, MET treatment did not alter capsid nuclear import in BHK-21 cells. Additionally, mimicking MET's effects using a non-hydrolyzable ATP analogue increased capsid cytoplasmic retention and decreased DENV-2 replication. Finally, the inhibition of the classical active nuclear transport pathway did not block capsid nuclear transport, suggesting that DENV-2 capsid enters the nucleus in Huh-7 and Vero cells independently of this pathway.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"106 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear transport of proteins larger than 60 kDa occurs via energy-dependent active transport, whereas smaller proteins diffuse into the nucleus through nuclear pore complexes via passive nuclear transport. Although the dengue virus (DENV) replication cycle primarily takes place in the cytoplasm, the capsid protein and non-structural protein 5 (NS5) are imported into the nucleus through a nuclear localization sequence-dependent mechanism. However, given its small molecular weight (14 kDa), the DENV capsid protein may also enter the nucleus via passive diffusion. While some drugs primarily inhibit active nuclear transport, few are known to block passive diffusion. Notably, biguanides have been associated with inhibitory effects on passive nuclear transport. Since biguanides such as metformin (MET) exhibit anti-DENV properties, we investigated the effects of MET on the nuclear transport of DENV proteins. Our results suggest that MET induces changes in the nuclear membrane of Huh-7 cells and reduces capsid nuclear localization without affecting NS5 nuclear import. Furthermore, MET treatment did not alter capsid nuclear import in BHK-21 cells. Additionally, mimicking MET's effects using a non-hydrolyzable ATP analogue increased capsid cytoplasmic retention and decreased DENV-2 replication. Finally, the inhibition of the classical active nuclear transport pathway did not block capsid nuclear transport, suggesting that DENV-2 capsid enters the nucleus in Huh-7 and Vero cells independently of this pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信