Siyuan Tang, Lei Huang, Jiahao Ge, Jie Li, Mingxia Qiu, Yiqing Zhang, Mei Long, Gang Wu, Rui Zhang, Xueyun Ma, Qiang Xia, Ping Wan, Taihua Yang
{"title":"Influence of salt solution on the physicochemical properties and in vitro/ in vivo expression of mRNA/LNP.","authors":"Siyuan Tang, Lei Huang, Jiahao Ge, Jie Li, Mingxia Qiu, Yiqing Zhang, Mei Long, Gang Wu, Rui Zhang, Xueyun Ma, Qiang Xia, Ping Wan, Taihua Yang","doi":"10.1186/s12951-025-03318-w","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) have revolutionized nucleic acid delivery, enabling significant advances in mRNA-based therapeutics. While extensive research has focused on lipid composition, the impact of preparation solutions on LNP performance remains underexplored. This study systematically investigated the effects of pH, salt type, and concentration across key preparation solutions-mRNA aqueous, dilution, exchange, and storage solutions-on the physicochemical properties, stability, and expression efficiency of SM102-based mRNA/LNPs. Findings revealed that the pH of the mRNA aqueous solution was critical, with a pH of 4 optimizing encapsulation efficiency (EE) and cellular expression. The exchange solution's pH significantly influenced biodistribution, particularly liver-specific expression following intravenous and intramuscular administration. Sucrose was identified as essential for freeze-thaw stability, with a 300 mM concentration minimizing aggregation and mRNA leakage. Furthermore, preparation solutions were shown to influence the structural integrity of LNPs, impacting their in vivo and in vitro performance. These insights highlight the importance of preparation conditions in optimizing LNP formulations for clinical applications, offering a foundation for enhanced therapeutic design and delivery.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"223"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03318-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) have revolutionized nucleic acid delivery, enabling significant advances in mRNA-based therapeutics. While extensive research has focused on lipid composition, the impact of preparation solutions on LNP performance remains underexplored. This study systematically investigated the effects of pH, salt type, and concentration across key preparation solutions-mRNA aqueous, dilution, exchange, and storage solutions-on the physicochemical properties, stability, and expression efficiency of SM102-based mRNA/LNPs. Findings revealed that the pH of the mRNA aqueous solution was critical, with a pH of 4 optimizing encapsulation efficiency (EE) and cellular expression. The exchange solution's pH significantly influenced biodistribution, particularly liver-specific expression following intravenous and intramuscular administration. Sucrose was identified as essential for freeze-thaw stability, with a 300 mM concentration minimizing aggregation and mRNA leakage. Furthermore, preparation solutions were shown to influence the structural integrity of LNPs, impacting their in vivo and in vitro performance. These insights highlight the importance of preparation conditions in optimizing LNP formulations for clinical applications, offering a foundation for enhanced therapeutic design and delivery.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.