Rita M Maravilha, Telma Fernandes, Pedro M Barros, Susana T Leitão, Diego Rubiales, Maria Carlota Vaz Patto, Carmen Santos
{"title":"A dual transcriptome analysis reveals accession-specific resistance responses in <i>Lathyrus sativus</i> against <i>Erysiphe pisi</i>.","authors":"Rita M Maravilha, Telma Fernandes, Pedro M Barros, Susana T Leitão, Diego Rubiales, Maria Carlota Vaz Patto, Carmen Santos","doi":"10.3389/fpls.2025.1542926","DOIUrl":null,"url":null,"abstract":"<p><p><i>Lathyrus sativus</i> (grass pea) is a valuable crop for sustainable agriculture, offering dietary benefits and desirable agronomic traits. However, its yield stability is limited by diseases such as powdery mildew caused by <i>Erysiphe pisi</i>. Increasing fungal resistance to pesticides and environmental concerns demand the development of resistant crop varieties. To identify key defense mechanisms and effector genes involved in the <i>Lathyrus sativus</i>-<i>Erysiphe pisi</i> interaction we analyzed four <i>L. sativus</i> accessions exhibiting varying resistance to <i>E. pisi</i> (resistant, partially resistant, partially susceptible, and susceptible) using a dual RNA-Seq experiment across different time points. We observed a host biphasic response, characterized by an initial burst of gene expression, followed by a quiescent phase, and a subsequent wave of intense gene expression. Common <i>L. sativus</i> defense mechanisms included antifungal protein expression, cell wall reinforcement, and reactive oxygen species-mediated defense. These defenses involved respectively Bowman-Birk type proteinase inhibitors, peptidyl-prolyl cis-trans isomerases and mannitol dehydrogenases. The resistant accession specifically activated early reinforcement of structural barriers associated with lignin biosynthesis and the phenylpropanoid pathway, along with sustained chemical defenses (e.g. <i>eugenol synthase 1</i>), epigenetic regulation, and oxidative stress responses thorough peroxidases and heat shock proteins. The partial resistant accession exhibited a front-loaded defense response at early infection stages. Contrastingly, the partially susceptible accession exhibited a weaker baseline defense, with a slower and less robust response targeting pathogen infection. We identified potential <i>E. pisi</i> effectors, including genes involved in cell wall hydrolysis (e.g. mannosidase DCW1), nutrient acquisition (e.g. secreted alpha-glucosidase), and virulence (e.g. SnodProt1), with a higher diversity of effectors identified in the susceptible accession. In conclusion, this study identifies novel targets such as NLRs and effectors, antifungal proteins and genes related to cell wall reinforcement, within the complex <i>Lathyrus sativus</i>-<i>Erysiphe pisi</i> interaction to support future breeding programs aimed at enhancing resistance to <i>E. pisi</i> in <i>L. sativus</i> and related species.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1542926"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1542926","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lathyrus sativus (grass pea) is a valuable crop for sustainable agriculture, offering dietary benefits and desirable agronomic traits. However, its yield stability is limited by diseases such as powdery mildew caused by Erysiphe pisi. Increasing fungal resistance to pesticides and environmental concerns demand the development of resistant crop varieties. To identify key defense mechanisms and effector genes involved in the Lathyrus sativus-Erysiphe pisi interaction we analyzed four L. sativus accessions exhibiting varying resistance to E. pisi (resistant, partially resistant, partially susceptible, and susceptible) using a dual RNA-Seq experiment across different time points. We observed a host biphasic response, characterized by an initial burst of gene expression, followed by a quiescent phase, and a subsequent wave of intense gene expression. Common L. sativus defense mechanisms included antifungal protein expression, cell wall reinforcement, and reactive oxygen species-mediated defense. These defenses involved respectively Bowman-Birk type proteinase inhibitors, peptidyl-prolyl cis-trans isomerases and mannitol dehydrogenases. The resistant accession specifically activated early reinforcement of structural barriers associated with lignin biosynthesis and the phenylpropanoid pathway, along with sustained chemical defenses (e.g. eugenol synthase 1), epigenetic regulation, and oxidative stress responses thorough peroxidases and heat shock proteins. The partial resistant accession exhibited a front-loaded defense response at early infection stages. Contrastingly, the partially susceptible accession exhibited a weaker baseline defense, with a slower and less robust response targeting pathogen infection. We identified potential E. pisi effectors, including genes involved in cell wall hydrolysis (e.g. mannosidase DCW1), nutrient acquisition (e.g. secreted alpha-glucosidase), and virulence (e.g. SnodProt1), with a higher diversity of effectors identified in the susceptible accession. In conclusion, this study identifies novel targets such as NLRs and effectors, antifungal proteins and genes related to cell wall reinforcement, within the complex Lathyrus sativus-Erysiphe pisi interaction to support future breeding programs aimed at enhancing resistance to E. pisi in L. sativus and related species.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.