Drosophila complement-like Mcr acts as a wound-induced inflammatory chemoattractant.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-04-07 Epub Date: 2025-03-18 DOI:10.1016/j.cub.2025.02.036
Luigi Zechini, Henry Todd, Thibaut Sanchez, Daniel R Tudor, Jennie S Campbell, Edward Antonian, Stephen J Jenkins, Christopher D Lucas, Andrew J Davidson, Jean van den Elsen, Linus J Schumacher, Alessandro Scopelliti, Will Wood
{"title":"Drosophila complement-like Mcr acts as a wound-induced inflammatory chemoattractant.","authors":"Luigi Zechini, Henry Todd, Thibaut Sanchez, Daniel R Tudor, Jennie S Campbell, Edward Antonian, Stephen J Jenkins, Christopher D Lucas, Andrew J Davidson, Jean van den Elsen, Linus J Schumacher, Alessandro Scopelliti, Will Wood","doi":"10.1016/j.cub.2025.02.036","DOIUrl":null,"url":null,"abstract":"<p><p>Sterile tissue injury is accompanied by an acute inflammatory response whereby innate immune cells rapidly migrate to the site of injury guided by pro-inflammatory chemotactic damage signals released at the wound. Understanding this immune response is key to improving human health, and recent advances in imaging technology have allowed researchers using different model organisms to observe this inflammatory response in vivo. Over recent decades, offering a unique combination of live time-lapse microscopy and genetics, the fruit fly Drosophila has emerged as a powerful model system to study inflammatory cell migration within a living animal.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup> However, we still know relatively little regarding the identity of the earliest signals that drive this immune cell recruitment and the mechanisms by which they act within the complex, in vivo setting of a multicellular organism. Here, we couple the powerful genetics and live imaging of Drosophila with mathematical modeling to identify the fly complement ortholog-macroglobulin complement-related (Mcr)-as an early, wound-induced chemotactic signal responsible for the inflammatory recruitment of immune cells to injury sites in vivo. We show that epithelial-specific knockdown of Mcr suppresses the recruitment of macrophages to wounds and combine predictive mathematical modeling with in vivo genetics to understand macrophage migration dynamics following manipulation of this chemoattractant. We propose a model whereby Mcr operates alongside hydrogen peroxide to ensure a rapid and efficient immune response to damage, uncovering a novel function for this protein that parallels the chemotactic role of the complement component C5a in mammals.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"1656-1664.e4"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.036","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sterile tissue injury is accompanied by an acute inflammatory response whereby innate immune cells rapidly migrate to the site of injury guided by pro-inflammatory chemotactic damage signals released at the wound. Understanding this immune response is key to improving human health, and recent advances in imaging technology have allowed researchers using different model organisms to observe this inflammatory response in vivo. Over recent decades, offering a unique combination of live time-lapse microscopy and genetics, the fruit fly Drosophila has emerged as a powerful model system to study inflammatory cell migration within a living animal.1,2,3,4 However, we still know relatively little regarding the identity of the earliest signals that drive this immune cell recruitment and the mechanisms by which they act within the complex, in vivo setting of a multicellular organism. Here, we couple the powerful genetics and live imaging of Drosophila with mathematical modeling to identify the fly complement ortholog-macroglobulin complement-related (Mcr)-as an early, wound-induced chemotactic signal responsible for the inflammatory recruitment of immune cells to injury sites in vivo. We show that epithelial-specific knockdown of Mcr suppresses the recruitment of macrophages to wounds and combine predictive mathematical modeling with in vivo genetics to understand macrophage migration dynamics following manipulation of this chemoattractant. We propose a model whereby Mcr operates alongside hydrogen peroxide to ensure a rapid and efficient immune response to damage, uncovering a novel function for this protein that parallels the chemotactic role of the complement component C5a in mammals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信