Multiple metrics of trichome diversity support independent evolutionary hypotheses in blazingstars (Mentzelia: Loasaceae).

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-03-20 DOI:10.1093/evolut/qpaf054
Rosemary A E Glos, Marjorie G Weber
{"title":"Multiple metrics of trichome diversity support independent evolutionary hypotheses in blazingstars (Mentzelia: Loasaceae).","authors":"Rosemary A E Glos, Marjorie G Weber","doi":"10.1093/evolut/qpaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Trichomes are diverse and functionally important plant structures that vary in response to selection pressures across ecological gradients and evolutionary timescales. Classic hypotheses predict higher investment in trichomes in arid environments, at lower latitudes, and in long-lived species, as well as shifts in trichome production to reduce conflict between defense traits and mutualisms. However, tests of these hypotheses often rely on aggregate trichome metrics and neglect the rich diversity of trichome phenotypes. Here, we collected data on fine-scale patterns of trichome length, density, and type in 52 species of blazingstars (Mentzelia: Loasaceae) and tested whether individual trichome traits were consistent with existing adaptive hypotheses. Contrary to longstanding hypotheses, we found that Mentzelia species tend to display greater trichome investment in less arid environments and at higher latitudes. Barbed trichomes are significantly less common on the upper surface of the leaf, possibly reducing defense-pollination conflict. Species with larger petals (a proxy for reliance on insect pollinators) also shift investment away from insect-trapping hairs on the underside of the leaf. Examining trichome types separately revealed that different morphologies show distinct responses to abiotic and biotic factors, demonstrating the need to consider multiple axes of diversity when testing adaptive hypotheses for complex traits.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf054","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Trichomes are diverse and functionally important plant structures that vary in response to selection pressures across ecological gradients and evolutionary timescales. Classic hypotheses predict higher investment in trichomes in arid environments, at lower latitudes, and in long-lived species, as well as shifts in trichome production to reduce conflict between defense traits and mutualisms. However, tests of these hypotheses often rely on aggregate trichome metrics and neglect the rich diversity of trichome phenotypes. Here, we collected data on fine-scale patterns of trichome length, density, and type in 52 species of blazingstars (Mentzelia: Loasaceae) and tested whether individual trichome traits were consistent with existing adaptive hypotheses. Contrary to longstanding hypotheses, we found that Mentzelia species tend to display greater trichome investment in less arid environments and at higher latitudes. Barbed trichomes are significantly less common on the upper surface of the leaf, possibly reducing defense-pollination conflict. Species with larger petals (a proxy for reliance on insect pollinators) also shift investment away from insect-trapping hairs on the underside of the leaf. Examining trichome types separately revealed that different morphologies show distinct responses to abiotic and biotic factors, demonstrating the need to consider multiple axes of diversity when testing adaptive hypotheses for complex traits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信