Artuur Couckuyt, Sofie Van Gassen, Annelies Emmaneel, Vince Janda, Malicorne Buysse, Ine Moors, Jan Philippé, Mattias Hofmans, Tessa Kerre, Yvan Saeys, Sarah Bonte
{"title":"Unraveling genotype-phenotype associations and predictive modeling of outcome in acute myeloid leukemia.","authors":"Artuur Couckuyt, Sofie Van Gassen, Annelies Emmaneel, Vince Janda, Malicorne Buysse, Ine Moors, Jan Philippé, Mattias Hofmans, Tessa Kerre, Yvan Saeys, Sarah Bonte","doi":"10.1002/cyto.b.22230","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) comprises 32% of adult leukemia cases, with a 5-year survival rate of only 20-30%. Here, the immunophenotypic landscape of this heterogeneous malignancy is explored in a single-center cohort using a novel quantitative computational pipeline. For 122 patients who underwent induction treatment with intensive chemotherapy, leukemic cells were identified at diagnosis, computationally preprocessed, and quantitatively subtyped. Computational analysis provided a broad characterization of inter- and intra-patient heterogeneity, which would have been harder to achieve with manual bivariate gating. Statistical testing discovered associations between CD34, CD117, and HLA-DR expression patterns and genetic abnormalities. We found the presence of CD34<sup>+</sup> cell populations at diagnosis to be associated with a shorter time to relapse. Moreover, CD34<sup>-</sup> CD117<sup>+</sup> cell populations were associated with a longer time to AML-related mortality. Machine learning (ML) models were developed to predict 2-year survival, European LeukemiaNet (ELN) risk category, and inv(16) or NPM1<sup>mut</sup>, based on computationally quantified leukemic cell populations and limited clinical data, both readily available at diagnosis. We used explainable artificial intelligence (AI) to identify the key clinical characteristics and leukemic cell populations important for our ML models when making these predictions. Our findings highlight the importance of developing objective computational pipelines integrating immunophenotypic and genetic information in the risk stratification of AML.</p>","PeriodicalId":10883,"journal":{"name":"Cytometry Part B: Clinical Cytometry","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part B: Clinical Cytometry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cyto.b.22230","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) comprises 32% of adult leukemia cases, with a 5-year survival rate of only 20-30%. Here, the immunophenotypic landscape of this heterogeneous malignancy is explored in a single-center cohort using a novel quantitative computational pipeline. For 122 patients who underwent induction treatment with intensive chemotherapy, leukemic cells were identified at diagnosis, computationally preprocessed, and quantitatively subtyped. Computational analysis provided a broad characterization of inter- and intra-patient heterogeneity, which would have been harder to achieve with manual bivariate gating. Statistical testing discovered associations between CD34, CD117, and HLA-DR expression patterns and genetic abnormalities. We found the presence of CD34+ cell populations at diagnosis to be associated with a shorter time to relapse. Moreover, CD34- CD117+ cell populations were associated with a longer time to AML-related mortality. Machine learning (ML) models were developed to predict 2-year survival, European LeukemiaNet (ELN) risk category, and inv(16) or NPM1mut, based on computationally quantified leukemic cell populations and limited clinical data, both readily available at diagnosis. We used explainable artificial intelligence (AI) to identify the key clinical characteristics and leukemic cell populations important for our ML models when making these predictions. Our findings highlight the importance of developing objective computational pipelines integrating immunophenotypic and genetic information in the risk stratification of AML.
期刊介绍:
Cytometry Part B: Clinical Cytometry features original research reports, in-depth reviews and special issues that directly relate to and palpably impact clinical flow, mass and image-based cytometry. These may include clinical and translational investigations important in the diagnostic, prognostic and therapeutic management of patients. Thus, we welcome research papers from various disciplines related [but not limited to] hematopathologists, hematologists, immunologists and cell biologists with clinically relevant and innovative studies investigating individual-cell analytics and/or separations. In addition to the types of papers indicated above, we also welcome Letters to the Editor, describing case reports or important medical or technical topics relevant to our readership without the length and depth of a full original report.