{"title":"Recent Advancements in Nanoparticles-Based Approaches for the Theranostics of Glioblastoma Multiforme.","authors":"Jugal Mandan, Dr Abhishek Kanugo","doi":"10.2174/0113892010352026250213055117","DOIUrl":null,"url":null,"abstract":"<p><p>One of the deadliest and most challenging tumors in the body is Glioblastoma Multiforme (GBM). The Most aggressive kinds of brain tumors pose multiple challenges in their treatment due to several barriers (BBB and BCSF). Conventional treatments show poor efficacy in the treatment owing to poor penetrability through the blood-brain barrier and extreme toxicity in the brain. Moreover, the prognosis and diagnosis of GBM are critical, as they can lead to a fatal outcome.The current state-of-the-art review emphasizes the novel theranostic nanoparticles, which are significantly effective in treating the GBM. The most effective nanocarriers are lipid-based (Liposomes, Solid lipid nanoparticles, nanostructured lipid carrier, nanoemulsion), polymeric (polymeric micelles, dendrimers, quantum dots, exosomes, and hydrogels), metallic (Gold, Silver, Platinum), inorganic (iron oxide, mesoporous silica, copper oxide, boron oxide, Gadolinium, Selenium, and Zinc oxide NPs), carbon-based (Carbon nanotubes and graphene oxide) and others (protein-based NPs, Cubosomes, Polymersosomes). These nanoparticle-loaded antitumor agents show good penetration across the barriers and improve survival rates compared to conventional ones. Lipid-based nanoparticles are preferred for providing high biocompatibility, biodegradability, and sustained release action. Polymeric nanocarriers are preferred for facilitating long-acting therapy, and patient comfort, mostly for their biosensing features. Carbon-based nanomaterials are gaining interest for their theranostic action. The most promising outcomes in clinical practices are shown in Liposomes, PLGAbased NPs, Gold NPs, hydrogels, iron oxide NPs, albumin-based NPs, etc.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010352026250213055117","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the deadliest and most challenging tumors in the body is Glioblastoma Multiforme (GBM). The Most aggressive kinds of brain tumors pose multiple challenges in their treatment due to several barriers (BBB and BCSF). Conventional treatments show poor efficacy in the treatment owing to poor penetrability through the blood-brain barrier and extreme toxicity in the brain. Moreover, the prognosis and diagnosis of GBM are critical, as they can lead to a fatal outcome.The current state-of-the-art review emphasizes the novel theranostic nanoparticles, which are significantly effective in treating the GBM. The most effective nanocarriers are lipid-based (Liposomes, Solid lipid nanoparticles, nanostructured lipid carrier, nanoemulsion), polymeric (polymeric micelles, dendrimers, quantum dots, exosomes, and hydrogels), metallic (Gold, Silver, Platinum), inorganic (iron oxide, mesoporous silica, copper oxide, boron oxide, Gadolinium, Selenium, and Zinc oxide NPs), carbon-based (Carbon nanotubes and graphene oxide) and others (protein-based NPs, Cubosomes, Polymersosomes). These nanoparticle-loaded antitumor agents show good penetration across the barriers and improve survival rates compared to conventional ones. Lipid-based nanoparticles are preferred for providing high biocompatibility, biodegradability, and sustained release action. Polymeric nanocarriers are preferred for facilitating long-acting therapy, and patient comfort, mostly for their biosensing features. Carbon-based nanomaterials are gaining interest for their theranostic action. The most promising outcomes in clinical practices are shown in Liposomes, PLGAbased NPs, Gold NPs, hydrogels, iron oxide NPs, albumin-based NPs, etc.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.