Modulation of the cognitive impairment associated with Alzheimer's disease by valproic acid: possible drug repurposing.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Mirna Ezzat Sedrak Sorial, Ragwa Mansour Abdelghany, Nesrine Salah El Dine El Sayed
{"title":"Modulation of the cognitive impairment associated with Alzheimer's disease by valproic acid: possible drug repurposing.","authors":"Mirna Ezzat Sedrak Sorial, Ragwa Mansour Abdelghany, Nesrine Salah El Dine El Sayed","doi":"10.1007/s10787-025-01695-0","DOIUrl":null,"url":null,"abstract":"<p><p>Sporadic Alzheimer's disease is a progressive neurodegenerative disorder affecting the central nervous system. Its main two hallmarks are extracellular deposition of aggregated amyloid beta resulting in senile plaques and intracellular hyperphosphorylated tau proteins forming neuro-fibrillary tangles. As those processes are promoted by the glycogen synthase kinase-3 enzyme, GSK3 inhibitors may be of therapeutic value in SAD. GSK3 is also inhibited by the action of insulin on insulin signaling. Insulin receptor desensitization in the brain is hypothesized to cause inhibition of insulin signaling pathway that ultimately causes cognitive deficits seen in SAD. In extant research, induction of cognitive impairment is achieved by intracerebroventricular injection of streptozotocin-a diabetogenic compound that causes desensitization to insulin receptors in the brain leading to the appearance of most of the SAD signs and symptoms. Valproic acid -a histone deacetylase inhibitor and anti-epileptic drug-has been recently studied in the management of SAD as a possible GSK3 inhibitor. Accordingly, the aim of the present study is to explore the role of multiple VPA doses on the downstream effects of the insulin signaling pathway in ICV STZ-injected mice and suggest a possible mechanism of VPA action. ICV STZ-injected mice showed deficiency in short- and long-term memory as well as increased anxiety, as established by open field test, Modified Y-maze, Morris water maze, and elevated plus maze neurobehavioral tests.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-025-01695-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sporadic Alzheimer's disease is a progressive neurodegenerative disorder affecting the central nervous system. Its main two hallmarks are extracellular deposition of aggregated amyloid beta resulting in senile plaques and intracellular hyperphosphorylated tau proteins forming neuro-fibrillary tangles. As those processes are promoted by the glycogen synthase kinase-3 enzyme, GSK3 inhibitors may be of therapeutic value in SAD. GSK3 is also inhibited by the action of insulin on insulin signaling. Insulin receptor desensitization in the brain is hypothesized to cause inhibition of insulin signaling pathway that ultimately causes cognitive deficits seen in SAD. In extant research, induction of cognitive impairment is achieved by intracerebroventricular injection of streptozotocin-a diabetogenic compound that causes desensitization to insulin receptors in the brain leading to the appearance of most of the SAD signs and symptoms. Valproic acid -a histone deacetylase inhibitor and anti-epileptic drug-has been recently studied in the management of SAD as a possible GSK3 inhibitor. Accordingly, the aim of the present study is to explore the role of multiple VPA doses on the downstream effects of the insulin signaling pathway in ICV STZ-injected mice and suggest a possible mechanism of VPA action. ICV STZ-injected mice showed deficiency in short- and long-term memory as well as increased anxiety, as established by open field test, Modified Y-maze, Morris water maze, and elevated plus maze neurobehavioral tests.

丙戊酸对阿尔茨海默病相关认知障碍的调节:可能的药物再利用
散发性阿尔茨海默病是一种影响中枢神经系统的进行性神经退行性疾病。它的两个主要特征是细胞外聚集的β淀粉样蛋白沉积导致老年斑和细胞内过度磷酸化的tau蛋白形成神经原纤维缠结。由于这些过程是由糖原合成酶激酶-3酶促进的,因此GSK3抑制剂可能具有治疗SAD的价值。胰岛素对胰岛素信号传导的作用也会抑制GSK3。假设大脑中的胰岛素受体脱敏会导致胰岛素信号通路的抑制,最终导致SAD中出现的认知缺陷。在现有的研究中,认知障碍的诱导是通过脑室内注射链脲佐菌素来实现的,链脲佐菌素是一种致糖尿病化合物,可引起大脑中胰岛素受体的脱敏,导致大多数SAD体征和症状的出现。丙戊酸是一种组蛋白去乙酰化酶抑制剂和抗癫痫药物,最近被研究作为一种可能的GSK3抑制剂用于SAD的治疗。因此,本研究的目的是探讨多种剂量VPA对注射ICV stz小鼠胰岛素信号通路下游效应的作用,并提出VPA作用的可能机制。通过开放场试验、改良y型迷宫、Morris水迷宫和升高+迷宫神经行为试验证实,注射ICV stz的小鼠表现出短期和长期记忆缺陷以及焦虑增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信