Deletion of hepcidin disrupts iron homeostasis and hematopoiesis in zebrafish embryogenesis.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-04-01 Epub Date: 2025-04-04 DOI:10.1242/dev.204307
Wenyi Yang, Mingjian Peng, Youquan Wang, Xiaowen Zhang, Wei Li, Xue Zhai, Zhichao Wu, Peng Hu, Liangbiao Chen
{"title":"Deletion of hepcidin disrupts iron homeostasis and hematopoiesis in zebrafish embryogenesis.","authors":"Wenyi Yang, Mingjian Peng, Youquan Wang, Xiaowen Zhang, Wei Li, Xue Zhai, Zhichao Wu, Peng Hu, Liangbiao Chen","doi":"10.1242/dev.204307","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is essential for cell growth and hematopoiesis, which is regulated by hepcidin (hamp). However, the role of hamp in zebrafish hematopoiesis remains unclear. Here, we have created a stable hamp knockout zebrafish model using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 system (CRISPR/Cas9 system). Our study revealed that hamp deletion led to maternal iron overload in embryos, significantly downregulating hemoglobin genes and reducing hemoglobin content. Single-cell RNA sequencing identified abnormal expression patterns in blood progenitor cells, with a specific progenitor subtype showing increased ferroptosis and delayed development. By crossing hamp knockout zebrafish with a gata1+ line (blood cells labeled fish line), we confirmed ferroptosis in blood progenitor cells. These findings underscore the crucial role of hamp in iron regulation and hematopoiesis, offering novel insights into developmental biology and potential therapeutic targets for blood disorders.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204307","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron is essential for cell growth and hematopoiesis, which is regulated by hepcidin (hamp). However, the role of hamp in zebrafish hematopoiesis remains unclear. Here, we have created a stable hamp knockout zebrafish model using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 system (CRISPR/Cas9 system). Our study revealed that hamp deletion led to maternal iron overload in embryos, significantly downregulating hemoglobin genes and reducing hemoglobin content. Single-cell RNA sequencing identified abnormal expression patterns in blood progenitor cells, with a specific progenitor subtype showing increased ferroptosis and delayed development. By crossing hamp knockout zebrafish with a gata1+ line (blood cells labeled fish line), we confirmed ferroptosis in blood progenitor cells. These findings underscore the crucial role of hamp in iron regulation and hematopoiesis, offering novel insights into developmental biology and potential therapeutic targets for blood disorders.

Hepcidin缺失破坏斑马鱼胚胎发生中的铁稳态和造血。
铁是细胞生长和造血所必需的,受hepcidin (hamp)调节。然而,仓鼠在斑马鱼造血中的作用尚不清楚。在这里,我们使用Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated nuclease 9系统(CRISPR/Cas9系统)创建了一个稳定的hamp敲除斑马鱼模型。我们的研究表明,hamp缺失导致胚胎中母体铁超载,显著下调血红蛋白基因并降低血红蛋白含量。单细胞RNA测序鉴定了血液祖细胞的异常表达模式,其中一种特定的祖细胞亚型显示铁下垂增加和发育延迟。通过将hamp基因敲除的斑马鱼与gata1+细胞系(血细胞标记的鱼系)杂交,我们证实了血液祖细胞中的铁下垂。这些发现强调了hamp在铁调节和造血中的关键作用,为发育生物学和血液疾病的潜在治疗靶点提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信