Sodium alginate microspheres loaded with Quercetin/Mg nanoparticles as novel drug delivery systems for osteoarthritis therapy.

IF 2.8 3区 医学 Q1 ORTHOPEDICS
Jun Chen, Guoya Wu, Jian Wu, Zhijian Jiao
{"title":"Sodium alginate microspheres loaded with Quercetin/Mg nanoparticles as novel drug delivery systems for osteoarthritis therapy.","authors":"Jun Chen, Guoya Wu, Jian Wu, Zhijian Jiao","doi":"10.1186/s13018-025-05698-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is the most prevalent arthritic disease characterized by cartilage degradation and low-grade inflammation, for which there remains a lack of efficacious therapeutic interventions. Notably, mitigating the impact of oxidative stress (OS) and inflammatory factors could help alleviate or hinder the advancement of OA. Given the benefits of both quercetin (Que) and Magnesium ion (Mg<sup>2+</sup>) in OA treatment, coupled with the structural properties of Que, we have innovatively developed the Que-Mg<sup>2+</sup> nanoparticles (NPs), aiming to deliver both Que and Mg<sup>2+</sup> simultaneously and achieve enhanced therapeutic outcomes for OA. Moreover, to avoid the adverse reactions linked to frequent injections, sodium alginate (SA) microspheres encapsulating Que-Mg<sup>2+</sup> NPs (Que-Mg@SA) were designed to treat the H<sub>2</sub>O<sub>2</sub>-induced OA cell model.</p><p><strong>Methods: </strong>Que-Mg@SA microspheres were synthesized using the ionotropic gelation technique, with calcium chloride acting as the cross-linking agent. Comprehensive characterization of the Que-Mg@SA was conducted through transmission electron microscope (TEM), dynamic light scattering (DLS), optical microscope, and scanning electron microscope (SEM), which provided detailed insights into their size, zeta potential, morphology, and micromorphology. Additionally, the microsphere swelling rate and Que release were evaluated. The biocompatibility of Que-Mg@SA microspheres, along with their impact on chondrocyte viability, were detected through CCK-8 assay and live/dead cell staining. Furthermore, the antioxidant and anti-inflammatory properties of Que-Mg@SA were evaluated by examining the ROS scavenging ability and pro-inflammatory factors levels, respectively. Finally, the regulatory influence of Que-Mg@SA microspheres on extracellular matrix (ECM) metabolism in OA was assessed by immunofluorescence staining and Western blot.</p><p><strong>Results: </strong>Characterization results revealed that Que-Mg NPs exhibit nanoscale diameter, exceptional stability, and good dispersibility, while Que-Mg@SA possesses high entrapment efficiency (EE%) and loading efficiency (LE%), pronounced hygroscopic properties, and sustained drug-release capabilities. Additionally, in vitro cellular assays revealed that the biocompatible Que-Mg@SA microspheres significantly restored chondrocyte viability, scavenged H<sub>2</sub>O<sub>2</sub>-induced excessive ROS, reduced the levels of inflammatory cytokines, upregulated cartilage anabolic gene expression, downregulated cartilage catabolic protease gene expression, and maintained the metabolic balance of cartilage tissue.</p><p><strong>Conclusion: </strong>The functionalized Que-Mg@SA microspheres developed in our study hold great promise as a drug delivery system for OA and potentially other biomedical applications.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"300"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05698-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Osteoarthritis (OA) is the most prevalent arthritic disease characterized by cartilage degradation and low-grade inflammation, for which there remains a lack of efficacious therapeutic interventions. Notably, mitigating the impact of oxidative stress (OS) and inflammatory factors could help alleviate or hinder the advancement of OA. Given the benefits of both quercetin (Que) and Magnesium ion (Mg2+) in OA treatment, coupled with the structural properties of Que, we have innovatively developed the Que-Mg2+ nanoparticles (NPs), aiming to deliver both Que and Mg2+ simultaneously and achieve enhanced therapeutic outcomes for OA. Moreover, to avoid the adverse reactions linked to frequent injections, sodium alginate (SA) microspheres encapsulating Que-Mg2+ NPs (Que-Mg@SA) were designed to treat the H2O2-induced OA cell model.

Methods: Que-Mg@SA microspheres were synthesized using the ionotropic gelation technique, with calcium chloride acting as the cross-linking agent. Comprehensive characterization of the Que-Mg@SA was conducted through transmission electron microscope (TEM), dynamic light scattering (DLS), optical microscope, and scanning electron microscope (SEM), which provided detailed insights into their size, zeta potential, morphology, and micromorphology. Additionally, the microsphere swelling rate and Que release were evaluated. The biocompatibility of Que-Mg@SA microspheres, along with their impact on chondrocyte viability, were detected through CCK-8 assay and live/dead cell staining. Furthermore, the antioxidant and anti-inflammatory properties of Que-Mg@SA were evaluated by examining the ROS scavenging ability and pro-inflammatory factors levels, respectively. Finally, the regulatory influence of Que-Mg@SA microspheres on extracellular matrix (ECM) metabolism in OA was assessed by immunofluorescence staining and Western blot.

Results: Characterization results revealed that Que-Mg NPs exhibit nanoscale diameter, exceptional stability, and good dispersibility, while Que-Mg@SA possesses high entrapment efficiency (EE%) and loading efficiency (LE%), pronounced hygroscopic properties, and sustained drug-release capabilities. Additionally, in vitro cellular assays revealed that the biocompatible Que-Mg@SA microspheres significantly restored chondrocyte viability, scavenged H2O2-induced excessive ROS, reduced the levels of inflammatory cytokines, upregulated cartilage anabolic gene expression, downregulated cartilage catabolic protease gene expression, and maintained the metabolic balance of cartilage tissue.

Conclusion: The functionalized Que-Mg@SA microspheres developed in our study hold great promise as a drug delivery system for OA and potentially other biomedical applications.

Clinical trial number: Not applicable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
7.70%
发文量
494
审稿时长
>12 weeks
期刊介绍: Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues. Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications. JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信